'삼각함수'에 해당되는 글 1건

수학사랑의 라디안 논쟁이라는 글에 대한 답입니다.
------------------------------

 수학사랑에 질문에 대한 답변

선생님의 의견을 잘 읽어 보았습니다. 약간 혼란스러운 점이 있지만 대체적으로 선생님의 의견에 공감하는 바입니다. 단지 아래 오뎅/조개님의 말씀과 같이 어려운 부분이 있는 점에 또한 동의하며 몇 가지 말씀을 덧붙입니다.

우선 오뎅님의 말씀과 중복되지만 다시 한번 짚고 싶은 것은 현행 교육과정의 교과서 분량은 이러한 역사적 사실을 동기로 삼는 설명을 하기에는 턱없이 부족합니다. 7차 교육과정에서 교과서 분량의 상한선을 많이 높였지만(아마 약 1배 반 정도가 아니었나요?) 이정도로는 이러한 설명을 넣을 수가 없습니다. 물론 라디안의 설명만을 넣는다면 몇 쪽 더 쓰면 되겠지만 그러면 다른 모든 부분과의 형평이 깨어지고, 모든 단원의 개념을 이런식으로 설명한다면 간단히 현 교과서 분량의 10배가 되어도 모자랄 것입니다. 어쩌면 수학사교과서 같이 되어버리고 말지도 모르지요.

우선 라디안은 실수고 60분법의 도는 실수가 아니라는 말은 엄밀히는 틀리는 것이 확실하지요. 그러나 각의 크기를 따질 때는 '도'나 '라디안' 모두 하나의 단위가 됩니다. 물론 모두 다 실수를 쓰고 있고요. 이는 길이를 재는데 m, cm, ft 등의 여러 가지 단위가 쓰이는 것과 유사합니다.

이제 조금 조심하여 구별할 것은 '삼각비'와 '삼각함수' 입니다. 이 두 개는 동기 유발의 관점에서 연계하여 설명하는 것이 일반적입니다. 그러나 이 두 개는 전혀 관계가 없는 것이라고 할 수도 있습니다. 삼각비는 구체적인 도형과 각의 크기 등에 관련된 개념이고요. 삼각함수는 이로부터 한 단계 추상화되어 나타난 함수니까요. 이제 삼각비에서는 단위로 '도'를 쓰거나 '라디안'을 쓰거나 큰 문제가 되지는 않습니다. 그러나 삼각함수를 쓸 때는 변수를 라디안으로 할 때의 삼각비의 값을 함수값으로 정의하는 것이 다른 어떤 경우에 비하여 매우 간단합니다. 따라서 삼각함수는 라디안을 변수로 할 때의 삼각비의 값을 씁니다. 이제 예를 들면 함수 sin 은 실수집합 R 에서 R 로 정의된 함수이니까 (그리고 일반적으로 함수의 정의역, 치역의 수는 단위를 생각하지 않으니까) sin 함수의 변수(예전 각의 부분)는 단순한 실수일 수 밖에 없고, 또, 라디안을 쓸 때의 각의 삼각비와 같다고 할 수 있는 것입니다.

이러한 부분을 이해하신다면 왜 라디안을 소개하는지, 왜 라디안이 실수라고 하는 말이 정확히는 틀린 말이면서도, 라디안 부분을 실수로 바꿔서 삼각함수를 만드는 것이 옳은 것인지를 이해하실 수 있을 것입니다.

만일 우리가 수학의 내용만을 고집한다면 초등학교에서부터 라디안으로 시작하는 것이 옳습니다. 그러나 그렇게 하면 상당히 많은 부분이 너무 어려워질 것입니다. 반면에 '도'를 고집한다면 삼각함수를 다루는 것이 매우 복잡해질 것입니다. 따라서 처음에는 '도'를 사용하다가 어딘가에서 '라디안'을 도입해야 하는 것은 분명하며 이는 '오뎅'님의 견해가 맞습니다. 단지 점차로 현실문제의 주기적인 현상에 삼각함수의 응용이 늘어나는 지금이고 보면, 대다수의 사람들이 미적분의 방법을 모르는 것이 현실이더라도 21세기 초반의 우리 국민은 아마도 삼각함수를 구구단같이 사용할 수 있어야 될 것입니다. 이러한 점에서는 라디안의 도입은 될 수 있으면 앞당길 필요가 있다고도 생각합니다.(이는 무조건 교육과정을 높이자는 것은 아닙니다.)

오히려 현재의 교육과정에서 이러한 효과를 거둘 수 있는 것은 현장의 선생님들이 이러한 목표를 이해하고 이미 잘(?) 만들어져 있는 교육과정을 활용하는 것이라고 생각합니다.

예를 들면 중학교에서 원을 공부하면서 중심각은 '도'를 사용하지만 이로부터 부채꼴의 원호의 길이와 연계시키는 문제를 많이 다룹니다. 이것이 왜 많이 다루어지는가? 어쩌면 많은 사람들이 이 부분에서 문제로 내고 계산할 수 있는 것이 이것뿐이라서가 아닌가 하고 생각할 지도 모릅니다. 그러나 사실은 이것이 바로 다음 단계에 가서 라디안을 도입하기 위한 준비작업인 것입니다. 즉 중심각과 호의 길이를 자꾸 연계시켜 보면서 그 비례관계를 익히고 이것이 자연스럽게 된 다음에는 라디안으로의 전환이 한결 쉬울 것이기 때문입니다. 따라서 여기서 비례관계를 강조하고 반지름을 고정한(예를 들면 1로) 원의 원호의 길이를 알면 중심각을 알아낼 수 있다는 사실을 강조하면, 또, 나아가서 원호의 길이와 중심각 사이에는 1대1 대응이 있고 비례관계(1차함수)가 된다는 사실을 가르쳐주면 매우 훌륭하게 준비가 된 것일 것입니다. (물론 이것은 외우거나 말로 가르쳐 주는 것이 아니고요, 많은 활동과 암시를 통해서 이루어져야 할 것입니다. 암시라 함은 물론 잘 이해하고 있는 선생님의 태도, 나아가서 많은 상황에서 생각이 나아가는 방향을 보여줌으로써 교육되는 그런 부분이 되어야 하겠지요.)

한편 라디안을 도입하는 데 원주의 길이는 그 한 가지 방법에 불과합니다. 실제로 삼각함수와 쌍곡함수의 이론을 보다 보면 각의 크기는 원호의 길이보다는 부채꼴의 넓이와 더 관계가 깊다고 생각이 듭니다. 반지름 1인 원의 원주의 길이는 2pi 이며 이 원의 넓이는 pi 입니다. 이 원의 어떤 부채꼴의 중심각이 theta 이면 이 부채꼴의 넓이는 theta/2 입니다. 따라서 중심각의 크기는 부채꼴의 호의 길이로 잡을 수도 있지만 부채꼴의 넓이의 두 배로 잡을 수도 있습니다. 그러나 우리에게는 더욱 자연스럽다고 생각되는, 넓이의 두 배라는 각의 개념은, 처음 공부하는 학생들에게는 더욱 부자연스러워 보이고 혼란스러울 것입니다. 이러한 모든 설명은 가르치시는 선생님이 알아서 직접 학생들에게 해 주시기를 바라는 것이며 교과서에는 표현되지 못하는 부분입니다. (현장에서 대부분의 선생님들이 진도와 시간, 다른 많은 일에 바빠서 제대로 설명해주지 못하시는 것은 감안하지 않은 이야기입니다만...) 이러한 부분을 제대로 설명하는 것은 아마도 우리나라에서는 교과서 보다는 다른 보충교재가 담당할 일이라고 생각됩니다. 그리고 이러한 보충교재의 내용은 수학을 정말로 잘 설명해야 하므로 교과서보다 훨씬 쓰기 어려운 책이 될 것입니다. 이러한 작업에 시간을 할애할 선생님이 계시다면 우리나라 수학교육이 매우 발전할 것이라고 생각됩니다.

이러한 부분에서 선생님께서 지적하신 오개념 부분이 잘 설명될 것이라고 생각됩니다. y = x + sin x 와 같은 것은 원칙적으로는 이미 라디안이란 개념을 떠난 추상적인 삼각함수에 대한 것이므로 논외입니다. (물론 더 어려운 해석학의 분야에 가서 다시 원으로 돌아와 후리에변환등을 하게 되면 또 다시 각과의 관계가 불거집니다만...)

마지막으로 선생님이 지적하신, 각을 측도(measure)로 보는 Moise 교수의 책과 같은 것은 수학을 엄밀하게 기술함으로써 개념의 혼돈을 막은 좋은 방법입니다. 그리고 이러한 관점은 이전의 SMSG 에서 가장 강조되었던 점입니다. 이것이 모든 선생님의 생각의 바탕에 있어야 하는 것임에는 다시 강조할 필요가 없을 것입니다만 이 내용을 학생들에게 직접 문자 그대로 전달하는 것은 혼란만을 더 할 것이며 교육의 목표를 왜곡시킬 소지가 큽니다. 우리가 원하는 것은 이러한 기본 개념을 학생들이 자연스럽게 받아들이고 스스로의 생각을 통해서 측도의 개념까지 도달하도록 유도하는 것이며(물론 당장 도달하지 못해도 아무 상관이 없습니다) 내용의 주입을 통해서 아직 받아들일 수 없는 상황에서 말로만 기억하게 하는 것이 아닙니다. 말로만 기억하는 것은 그 어떤 상황과 비교하여도 최악이라고 밖에는 말할 수가 없습니다.(모르는 것이 훨씬 낫습니다.)

(참고: 마지막 부분의 단위 문제는 역시 곱셈의 경우와 덧셈의 경우는 서로 다릅니다. 물리학이나 공학에서 잘 쓰는 차원의 문제(단위의 문제)는 그 자체로도 한 권의 책으로 쓰여질만큼 중요한 개념이며 그 중심개념만 뽑는다면 대수학의 텐서곱의 이론이 될 것입니다. 그러나 서로 다른 단위를 갖는 두 수의 합은 서로 다른 집합의 두 원소에 대한 연산으로서 잘 정의하기가 힘든 개념이 됩니다.)

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,