한 두 주일 전에 미국에서 소포가 왔다.

미국에 주문했던 중고책 몇 권이 들어 있었다.

이 책은 amazon이나 alibris를 통해서 찾아 주문했었다.

이 가운데 한 권의 책은 어딘가에서 좋은 책이라고 해서 주문해 보았다.


제목은 Calculus of Variations이고 Gelfand와 Fomin의 책이다.



이 책은 아마도 20세기 중엽에 중요한 역할을 했을지도 모르는 책이고 이보다 조금 일찍 구입한 Lanczos의 Variational principles of mechanics라는 책도 여러 군데서 언급하는 유명한 책이다. 이 책은 수학의 이론 부분에서 잘 해설한 조금은 짧은 책이라고 하겠지만 Lanczos는 응용을 염두에 두고 쓴 책이라고 보인다.

(요즘 Springer의 Grundlargen? 시리즈에서 나온 Calculus of Variations 책으로는 두꺼운 2권짜리 책으로 순수이론을 총망라한 편미분방정식 책이 있다.)


Lanczos를 보면서 느끼는 점은 20세기 중엽의 책으로 보기에는 상당히 편안하게 쓰여있고 내용도 깊게 들어가지 않는 듯하다. 물리적인 문제도 들고 계산도 보여주면서 나가서 기초적인 변분학 내용을 익힐 수 있게 쓰여져 있는 듯하다. (아직 한 번 들쳐본 정도라서 잘은 모른다.) 이 사람이 쓴 Applied Mathematics 책도 이와 비슷하게 너무 이론적인 것에 치우치지 않았다. 그래서인지 이 책이 여러 공학자, 물리학자 등에게 읽히고 그런 논문에 refer되는 것 같다.


이렇게 구입하는 책들 가운데 상당부분은 미국의 지방 대학 도서관이나 public library에서 소장하고 있던 것을 방출한 것이다. (Released 도장이 찍혀 있는 적법하게 방출된 copy이다.) 더 이상 둘 곳이 없고 읽는 사람도 없다고 생각되어서 방출한 것일 것이겠지 싶다.


그런데 우리나라 입장에서 생각해 보면 우리는 이런 책이 꼭 필요하다. 현재 산업과 기술이 발전하는 단계에 있는 우리 수준에는 초보적인 연구 기반을 구축할 때라고 보인다. 비록 S사가 세계적인 상품을 생산하고 있지만 그 뒤를 받치는 기초적 연구는 아직 초보단계이다. 이럴 때 꼭 필요한 수학적 지식은 이런 책에 들어있는 것처럼 조금은 낡은 그리고 조금은 쉬운 수학일 것이다. 그리고 공대에서 공학을 공부하는 사람들이 이런 이론을 알아야 하겠지만 분명히 제대로 배우고 있을 리가 없다. 공대 교수님 중에 이런 수준의 강의를 제대로 할 수 있는 분은 많지 않고, 수학과에 와서 듣지도 않으니까... 


선진국은 필요 없다고 버리지만 우리는 꼭 필요해 보여서 버리는 책을 사고 있는데, 사실 이런 것이 제대로 기반이 되려면 우리 말로 쓰여져 있어야 할 것이다. 다시 번역 내지는 교과서 논리로 돌아가게 되겠지만 이런 것들을 얼마나 accessible한 형태로 만들어 두는가가 다음세대의 발전을 위해서 중요할 것이다. Calculus of Variations 없이 응용수학이 나아갈 수 없을것이고, 지금은 그럭저럭 해나가고 있지만 조금 있으면 산업체에서 이런거 잘 하는 사람 없나 하고 찾는 것이 당연해 보인다. 우리나라에 준비되지 않으면 이런 것은 외국 사람을 불러서 시키는수 밖에 없는데, 지금 교과부의 생각이 이런 것이라면, 글쎄 과연 이런 식으로 기반되는 이론을 얼마나 받쳐줄 수 있을지도 모르겠고, 결국 우리나라에는 이 결과로 남는 end 기술만 있고 이를 개발하는 능력은 영원히 정착하지 못할지로 모른다는 생각이 든다. 


늦었어도 빨리 대비하는데는, 특히 현재의 부족한 인력으로 감당할 수는 없으니 지금 공부하는 세대가 빨리 진입할 수 있게 하려는데는, 쉬운, 하지만 핵심을 짚는 책이 필수이다. Gelfand와 Fomin의 책은 이런 것을 할 수 있게 쓰여진 듯하다. 응용문제는 별로 없지만 본론의 핵심이 무엇인지를 쉽게 쓰고 있다. (러시아의 수학 책의 특징이라고 하겠다.) 이런 것과 Lanczos와 같은 이론 문제 해설서 정도를 가지고 있으면 어떤 문제집을 가지고와도 해결할 수 있는 준비가 되지 않을까?



블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,