앞 글에서 현대벡터해석이란 조금 오래 된 책에 대하여 글을 쓴지 넉 달은 된 것 같다.
그 동안 바삐 이것 저것 하다 보니 별 일 못하고 여름 방학을 다 보냈다. 학기중 보다는 방학이 더 바쁜듯이 느껴지는 것도 이제는 5년이 넘은 것 같다. 아마 계속 이런 추세가 늘어날 것이라고 보인다.
오래 전에 (아마도 2년 전 쯤에) 일본 나고야 대학 수학과의 홈페이지에서 그 학교 강의 목록을 받아보았었다. 자세히 읽어보지 않아서 그냥 저장해 두었는데 이제야 한 파일을 열어서 살펴보았다. 일본의 학부 및 대학원 수학과 강의 목록은 예전과는 조금 달라진 것이 아닐까 한다. (일본에서 공부한 적이 없어서 예전에 어땠는지는 잘 모르지만 일본의 교과서들의 제목을 보며 내가 공부하던 때의 과목들과 크게 다르지 않을 것이라는 생각을 했었다.)
요즘은 제목들도 조금 통합되거나 하고 틀에 박힌 내용들이 줄어들었으며 새로운 내용의 강의가 많이 보인다. 우리학교의 강의 내용과 비교하면 우리 것이 좀 낡은 듯이 보이기도 해서 벤치마킹이라도 해야 하는가 하는 생각이 들던 참이었다.
그 학교 2007년도 2학기의 강의를 보던 중 내 전공인 기하학 분야의 강의로 기하학요론II 라는 강의가 보였고 무엇을 가르치나 보니 벡터해석과 그 응용 정도라고 보인다. 교과서는 없고 참고서만 6권이 있는데 거기서 맨 마지막에 적혀있는 책이 이 스틴로드/스펜서/니커슨 등이 쓴 현대벡터해석으로 되어 있어 놀랐다.
강의는 학부 3학년생 대상인데 벡터해석을 가르치는 참고서들 중에 Fukaya의 "전자기장과 벡터해석"이나 "해석역학과 미분형식"이 들어 있고, Matsushima의 "다양체입문"과 이 책이 있으니 그 수준은 높다고 하지 않을 수 없다. 참고로 Fukaya의 해석역학 책은 몇 년 전에 내가 대학원 강의에서 교재로 썼던 것이다. 그리고 이 현대벡터해석은 그보다도 수준이 더 높다고 해야 한다. 물론 참고서이다. 하지만 나라면 학부학생들에게 이것을 참고서로 소개하지는 않을 것 같다. 나중에 한 번 보아라 할 정도 일까?
일본은 기초과학과 수학에 대한 경시 풍조가 없는가? 아닐 것이다. 일본이 더 하면 더 하겠지... 그런데 이런 강의를 열면 학생들이 따라 오는가? 아니 이런 강의를 듣겠다고 하는 학생들이 있는가? 혹시 필수로 지정하고 꼭 듣게 하는가? 잘 알 수 없지만 이런 강의가 제대로 열린다면 우리보다 좋은 시스템을 가지고 있거나 또는 일반인(학생을 포함해서)들의 수학에 대한 인식이 제대로 되어 있다고 볼 수 밖에 없다.
우리 나라의 대학 강의도 이러한 수준에 도달하려면 어떤 점에 노력을 기울여야 하는지 감이 잘 잡히지 않는다. 어쩌면 조금 더 조직적이고 체계적인 분석을 해 볼 시점일지, 아니면 좀 늦었는지도 잘 모르겠다.
어쨌든 잘 사용되지 않을 것이라고 생각했던 책이 버젓이 지금도 참고도서에 올라 있는 것에 한 방 먹은 것 같은 느낌으로 쓴다.
그 동안 바삐 이것 저것 하다 보니 별 일 못하고 여름 방학을 다 보냈다. 학기중 보다는 방학이 더 바쁜듯이 느껴지는 것도 이제는 5년이 넘은 것 같다. 아마 계속 이런 추세가 늘어날 것이라고 보인다.
오래 전에 (아마도 2년 전 쯤에) 일본 나고야 대학 수학과의 홈페이지에서 그 학교 강의 목록을 받아보았었다. 자세히 읽어보지 않아서 그냥 저장해 두었는데 이제야 한 파일을 열어서 살펴보았다. 일본의 학부 및 대학원 수학과 강의 목록은 예전과는 조금 달라진 것이 아닐까 한다. (일본에서 공부한 적이 없어서 예전에 어땠는지는 잘 모르지만 일본의 교과서들의 제목을 보며 내가 공부하던 때의 과목들과 크게 다르지 않을 것이라는 생각을 했었다.)
요즘은 제목들도 조금 통합되거나 하고 틀에 박힌 내용들이 줄어들었으며 새로운 내용의 강의가 많이 보인다. 우리학교의 강의 내용과 비교하면 우리 것이 좀 낡은 듯이 보이기도 해서 벤치마킹이라도 해야 하는가 하는 생각이 들던 참이었다.
그 학교 2007년도 2학기의 강의를 보던 중 내 전공인 기하학 분야의 강의로 기하학요론II 라는 강의가 보였고 무엇을 가르치나 보니 벡터해석과 그 응용 정도라고 보인다. 교과서는 없고 참고서만 6권이 있는데 거기서 맨 마지막에 적혀있는 책이 이 스틴로드/스펜서/니커슨 등이 쓴 현대벡터해석으로 되어 있어 놀랐다.
강의는 학부 3학년생 대상인데 벡터해석을 가르치는 참고서들 중에 Fukaya의 "전자기장과 벡터해석"이나 "해석역학과 미분형식"이 들어 있고, Matsushima의 "다양체입문"과 이 책이 있으니 그 수준은 높다고 하지 않을 수 없다. 참고로 Fukaya의 해석역학 책은 몇 년 전에 내가 대학원 강의에서 교재로 썼던 것이다. 그리고 이 현대벡터해석은 그보다도 수준이 더 높다고 해야 한다. 물론 참고서이다. 하지만 나라면 학부학생들에게 이것을 참고서로 소개하지는 않을 것 같다. 나중에 한 번 보아라 할 정도 일까?
일본은 기초과학과 수학에 대한 경시 풍조가 없는가? 아닐 것이다. 일본이 더 하면 더 하겠지... 그런데 이런 강의를 열면 학생들이 따라 오는가? 아니 이런 강의를 듣겠다고 하는 학생들이 있는가? 혹시 필수로 지정하고 꼭 듣게 하는가? 잘 알 수 없지만 이런 강의가 제대로 열린다면 우리보다 좋은 시스템을 가지고 있거나 또는 일반인(학생을 포함해서)들의 수학에 대한 인식이 제대로 되어 있다고 볼 수 밖에 없다.
우리 나라의 대학 강의도 이러한 수준에 도달하려면 어떤 점에 노력을 기울여야 하는지 감이 잘 잡히지 않는다. 어쩌면 조금 더 조직적이고 체계적인 분석을 해 볼 시점일지, 아니면 좀 늦었는지도 잘 모르겠다.
어쨌든 잘 사용되지 않을 것이라고 생각했던 책이 버젓이 지금도 참고도서에 올라 있는 것에 한 방 먹은 것 같은 느낌으로 쓴다.