내 페북 친구중의 한 분이 쓰신 글을 읽고 생각해 본다.


제목은 "중고등 수학의 기형성"이고 몇 가지 문제와 해법을 제시하셨다.


이분의 문제제기는 너무 타당하고 오랜 동안의 문제이지만 젊은 분의 생각은 근래의 경험만으로 결정되기 쉬워서 몇 가지 반론 아닌 반론을 써서 이 분 글을 지지하려 한다.


1. 첫째 문제 제기는 고등학교 문제들이 미적분 일색이지만 뉴턴과 상관없이 수학적 내용만 있다는 것이다. 


맞다. 원래 만들어 놓았던 고등학교 교육과정과 거기서 물어볼 수 있는 문제를 너무 제한시켜서 원래 목적과의 연계는 완전히 끊어졌다. 기술된 방식이 현실문제와 연관 없는 방식이라고 썼지만, 문제는 원래 교과서(예를 들어 3차 교육과정)를 봐야 한다. 당시는 물론 지금도 교과서 분량을 크게 하지 않아야 하는 제약때문에 수학 설명은 매우 형식적이고 간결하게 쓰여졌지만 목표는 현실에의 응용을 최대한 생각했었다. 미적분 맨 끝에는 물리에의 응용 섹션이 있었고 여기서 기초적 물리 계산법과 1차원적 운동방정식인 2계미방 y''=f를 푸는 것이 들어있었다. 그리고 물리에 가면 어떻게 미적분을 써서 계산하는지를 연계시켰었다. 그런데 지금은 연계된 문제는 물어볼 수도 없고 이런 응용 파트도 제거된 것이 아닌지?


2차원 이상의 문제는 또 다른 문제다. 벡터, 극좌표가 없어져서 실질적으로 활용할 수 있는 좌표계는 수학책에 없다. 그래서 2차원 이상의 물리현상을 지금 고등학교 졸업한 학생은 전혀 이해할 수 없다.


2. 전기와 관련된 수학이 없다고 하셨다. 


하지만 전기와 관련된 수학은 기본 미적분만 배우면 나머지는 물리에서 배우게 되어 있었다. 이것이 물리책에서 수식이 빠져나가면서 안 남은 것이지... 내가 학교 다닐 때는 기술 시간에도 전기를 배우고 회로를 배우고 진공관, 다이오드, 트랜지스터를 배웠는데... 이에 대한 물리 이론은 물리 시간에 배우고, 중학교 때 삼각함수 적분값 계산을 미적분 안 쓰고 하는 법도 물상시간에 배웠었다.


3. 컴퓨터와 데이터 과학은 지금 정말 중요하다. 이것과 관련된 행렬이 없어졌다고 하셨다.


예전에도 고등학교 통계는 매우 어려운 과목이었다.(확률보다 더) 지금도 그렇겠지만 지금은 예전의 통계 단원의 내용은 중요성이 그때보다는 좀 떨어졌다. 그리고 이분이 이야기한 데이터과학이 들어오고 있다. 우리 고등학교 교육과정에는 전혀 반영되지 않는다. 오히려 중국에서는 고등학교에서 머신러닝을 공부하는 교과서를 발행하고 시험운영 중이다. 그 내용도 지금 우리 수학과 대학원에서 강의하는 머신러닝 과목 내용의 절반정도의 수학을 포함하고 있고 실제 코딩을 해 볼 수 있는 충분한 배경이 설명되어 있다. 


이런 새로운 데이터과학을 위해서 배워야만 하는 수학은 행렬 말고도 미적분과 2차원 이상의 공간개념이 있다. (그러니까 실제로는 고차원 즉 10,000차원이나 100,000차원 공간의 개념이 필요하다.) 이것을 어떻게 길러낼 것인가가 미래의 관건이다. 적어도 수학에서는... 그리고 데이터 과학에서는 댓글에 보이는 인도 같이 기초가 되는 수학을 하지 않으면 아무것도 제대로 하지 못하는데... 또 문제는 데이터 과학에서는 국가 경계가 허물어지므로 세계 최고가 아니면 제대로된 회사도 차리기 어려울 것이라는 점이다. 수학을 뼈빠지게 공부해야 하는 이유이다.


4. 그래서 제시하신 것이 고전수학을 전면 빼고 현대수학으로 고쳐야 한다고 하셨다.


그것이 일견 맞는 방향 같아보이지만 이것은 이미 70년 전에 미국에서 실패한 New Math 운동 같이 되기 쉽다. 수학이 그렇게 간단하지 않기 때문이다. 이에 대해서는 내가 외국에서 발표한 것도 있고 글을 쓴 것도 있는데... 각설하면 


(1) 고전과 현대를 적절히 융합시키지 않으면 안되는 것이고


(2) 이것을 선생님 몇 명은 제대로 할지 몰라도 대부분의 선생님과 학생들은 너무 어려워 한다는 것이고


(3) 빠르게 변화시켜나가면 제대로 된 교육방향도 사회가 받아들이지 않는다는 것


등등 많은 난관을 안고 있는 것이어서 섣불리 건드리면 안 하느니만 못하다는 것이다. 수학교육현대화를 우리나라는 1970년대에 시작했고 미국의 모형 일본의 모형을 적절히 선택해서 생각보다 성공했었다고 보이지만 그럼에도 지금은 뒤로 돌아가고 있지 않은가? (성공했다는 점은 우리 직전세대부터 20세기 말까지 우리나라 학생들은 미국 같은 나라에서 수학을 잘 하고 고용하기 좋은 인재로 인정받았다는 점을 보면 된다. 미국 학생들과는 질적으로 전혀 달라보였다. 뒤로 돌아가는 점인 요즘 졸업하는 학생들은 내가 가르쳐봐도 수학은 정말 모른다. 고등학교 수학을 전혀 이해하지 못하고 우리 학교에 들어오니까.)


5. 마지막으로 지금 수학이 현실과의 연관성을 잃어버리고 떠돌고 있다는 말씀인데 이것은 일견 맞다. 


지금 학생들이 현실성을 못 찾는 이유는 수학을 이해하지 못하고 있기 때문이다. 이해가 되던 시절에는 현실 문제를 보면 어떻게 접근할지 금방 보였고 또 논의할 수 있었지만, 지금 학생들은 보았던 문제만 풀줄 아는데 현실문제는 한 번도 본적이 없으니까 막막하게 보일 것이다. 


그렇다고 현실 문제를 가르치자는 것은 해법이 아니다. 너무 많고 너무 여러 방향의 문제가 있고 이것을 다 가르칠 수는 없다. 지금 식으로 공부하면 아무리 많은 현실문제를 가르쳐도 또 보게 되는 다른 문제는 본 적이 없어서 못푼다. 수학공부하고 이렇게 된 것은 수학이 추상적이 되어서 때문이 아니다. 오히려 배운 수학이 너무 근시안적이고 추상적이지 못하기 때문이다. (추상적이라는 말은 추상적 공리를 외웠다는 뜻이 아니다. 현실적 문제에서 추상적 구조를 캐치할 수 있게 되었다는 뜻이 추상적 사고를 한다는 뜻이다. 이해하지 못하면 추상적 사고가 불가능하다.) 


한편 지금 발전하는 AI와 기계학습은 매우 구체적인 것 같지만 실은 매우 추상적이다. 내가 몇 년 동안 수학과 대학원에서 기계학습 강의를 듣고 있지만 확률이론을 바탕으로 최대최소를 찾아나가는 현재의 AI는 전혀 구체적이지 않다. 소위 Bayes 식의 정보 갱신이 무슨 의미인지? 그러니까 현실 문제에서 무슨 뜻인지 말고 수학적으로 데이터의 의미에서 무슨 뜻인지를 파악하려고 보면 추상 중에도 추상이다. 많은 데이터가 오면 이중에 여러개의 평균을 내서 정규분포로 바꾸어내는 중심극한정리가 도대체 무슨 뜻인지는 학자도 제대로 설명할 수 없다. (현상은 설명이 쉽다. k개의 평균들은 정규분포에 가깝다는 말이다. 그런데 도대체 왜? 이것은 어째서 생기는 현상인지? 그래서 우리 데이터에서 나타나는 파라메터가 정규분포를 따를거다 라고 말하는 것은 도대체 지금 상황이 어떻다는 것인지?)


이런 것에 자기만의 감 (분명히 추상적 감)이 있는 사람만이 현재 데이터과학을 이끌고 나가는 사람처럼 될 수 있을것인데... 이 추상적 감은 어떻게 만들어질까? 현실적 감은 문제를 많이 다루고 (물리학 같이, 경제학 같이) 하면 생기겠지만 추상적 감은 수학을 많이 볼 수밖에 없다. 고차원을 제대로 보려면 벡터와 행렬을 보는 것이 맞다. 하지만 이것이 제대로 느껴지려면 3차원 도형을 제대로 볼 수 있어야 한다. 이것은 단지 벡터로 되는 것은 아니고 더 근본적인 기하가 필요하다. 꼭 논증기하일 필요는 없지만 대수 계산으로 바꾼 벡터만으로는 안된다. 그림이 있어야 하니까.



블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

조건희 군이 메일로 보내느라 앞 뒤에 인사가 있는 것은 빼고 본문만 옮겨 놓습니다.



개인적으로 근래에 sub-riemannian geometry에서 미분기하의 문제들을 확률론으로 접근하는 게 명확히 보여서 참 매력적이라고 생각하고 보고 하나하나 관련된 도구들을 본격적으로 공부해나가기 시작한 단계입니다.
제 개인적으로는 확률론의 도구들이 기하학적인 대상들을 이해하는 요긴한 도구임을 알려주는 페이퍼 중 하나는 Atiyah-Singer theorem을 확률론으로 증명한 게 아닌가 싶습니다. [1]

제가 현재 이해하는 선에서는 sub-riemannian geometry는 미분다양체의 탄젠트-번들의 부분-번들(sub-bundle)에 대한 정보만 들고있는 경우, 부분-번들에 bracket-generating condition 등의 (Lie-bracket으로 tangent bundle을 복구할 수 있는 sub-bundle) 추가적인 적절한 조건들을 요구해서 미분다양체를 어떻게 이해할지에 대한 거라고 납득하고 있습니다. Contact manifold, symplectic manifold에서 자연스럽게 위의 sub-riemannian geometry에 해당하는 상황들이 있는것 같습니다. [3]
그리고 sub-riemmanian manifold에 대해서도 submersion, 혹은 foliation이 있는 경우로 한정지으면 fiber가 totally geodesic submanifold가 되는 동치조건을 부분-번들에 주어진 sub-laplacian으로부터 완전히 기술할 수 있음이 알려져 있습니다. (Theorem 2.9 [3]) 그래서 sub-laplacian를 다루기 위한 각 diffusion operator에 대한 이해를 필요로 하게 되고, diffusion operator와 관련지어서semi-group이나 heat kernel 등을 이해해나가는 과정에서 여러 stochastic process들과 연결고리가 생기는 것 같습니다. 

특히 Heisenberg group에 대해 sub-riemannian manifold의 구체적인 예시로서 유용한 것 같습니다. [2], [3] Hisenberg group은 upper half plane의 고차원 일반화인 Siegel half plane을 complex manifold로서 볼 때 이에 대한 boundary에 해당하는 CR manifold입니다. [4] 그리고 하이젠베르그 군의 fractional sub-laplacian은 levy process의 infinitesimal generator가 되는 점과, Brownian motion이 Heisenberg group 위에서 어떻게 기술되는지도 구체적으로 확인할 수 있습니다. [5], [6]

그 외에 symmetric space의 위상적인 정보를 증명하기 위한 도구로도 확률론이 쓰이는 경우를 보았습니다. symmetric space의  brownion motion으로부터 기술되는 특정 stochastic process가 어떤 분포로 수렴하는지에 따라 compact와 non-compact를 구분할 수 있을 것이다는 명제를 뒷받침하는 예시까지 현재 알려져 있고 일반적인 명제에 대해서는 open problem으로 남아있는 것 같습니다. [7]

제 개인적으로는 기하학 공부를 위해서 확률론이 정말 중요한 도구가 아닌가 하는 생각을 지울 수가 없어서 새로운 한 해에 참 열심히 공부해보고 제가 있는 곳에서 sub-riemanian geometry 공부하시는 교수님들 곁에서 좋은 기회를 잡아서 한번 문제들도 해봐야겠다고 생각해보고 있습니다. 


블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

  • 그로몹 2017.12.30 13:53  댓글주소  수정/삭제  댓글쓰기

    sub-riemannian geometry는 1997년에 몇 사람이 같이 공부하면서 21세기의 기하학이 될거라고 했던 것이지만 공부해보려는 사람은 없었던 듯하고, stochastic process도 1990년대에 potential theory와 관련된 연구들이 나오면서 회자됐지만 당시 결론은 확률론으로 해석학에서 하지 못하는 새로운 것을 하기는 어려울 것이라는 평가였는데, 조건희 군의 말을 들으니 이제는 두 군데서 뭔가 본질적인 이야기가 가능한지도 모르겠다는 생각이 든다.

그래서 기하학이란 무엇인가?


앞에서 한 이야기에서 여기 저기 기하학이 나타나지만 기하학이 순수하게 도형만을 써서 기하를 한 것은 논증기하학 뿐이다. 당연히 데카르트를 지나면서 가하학은 좌표를 사용하게 되었고 미분가능한 함수를 사용하는 것은 당연하다. 그러니까 당연히 선형대수와 미적분학을 사용한다. 물론 앞에서 이야기한 편미방을 풀어야 할 때는 해석학도 많이많이 사용한다. 그러니까 기하학이란 무엇인가? 요즘은 대부분 기하학이란 미방을 풀어서 또는 그 밖의 방법으로 기하학적 대상을 구성하는 것이다. 아니면 주어진 기하학적 대상의 성질을 여러 해석학적 방법으로 연구해서 그 대상의 위상적 성질을 발견하는 것 정도로 생각한다.


꼭 말하고 싶은 미분기하학의 기초적 이론은 그 출발을 미적분에 둔다. 그 밑에는 수렴을 다루는 위상이 있지만 미분기하학은 그 부분을 굳이 알려고도 하지 않는다. 즉 수학 이론 전체에서 미분가능성 아래쪽은 안 들여다본다. 모든 것은 Taylor 전개에서 나오는 것에서 출발하고, 모든 것을 미분이 주는 선형구조 (미분형식)으로 바꿔서 이해한다. 이것이 19세기 말의 기하학자들의 결론이고 결국 카르탕이 만들어 준 새로운 미분기하학이다.


미분기하학만 공부하다 보니 다른 수학은 공부하기 어렵게 느껴진다. 특히 확률론을 들여다보면 정신이 하나도 없다. 마치 수렴을 이해하기 위해서 일반위상수학을 공부하면 예와 반례들을 모두 따져 보던 것과 똑같다. 이런 저런 거리를 다루면서 특징을 알아보는 것과 똑같고 함수공간에 어떤 위상이 잘 맞는지를 찾느라 무한차원 선형위상공간의 이론을 연구하던 때와 똑같다. 20세기 중반에 선형위상공간의 이론이 난무하던 적이 있었지만 무엇이 어떤지 알고 나서는 복잡한 위상들은 다 사라진 듯하고 소볼레프와 횔더, L^p 정도 남아서 서로 잘 엮어서 사용되는 것같다. 여기도 결국 필요한 것만 남기면 된다고 생각하고 있는 듯하다. 미분기하가 복잡한 수럼은 다 없애고 smooth 함수와 미분형식만 남겨서 잘 살고 있는 것처럼.


확률론은 그럴 수 없는가? 왜 항상 시작하면 가측함수로 내려가는가? 실제로 구체적인 예도 제대로 들 수 없는 것들인데... 미분기하처럼 stochastic Taylor 전개 정도를 기점으로 그 아래는 모두 버리고 이토 미적분 (또는 이와 비슷한 것들)의 공식만을 가지고 출발해서 훨씬 직관적으로(기하학적으로) 바꿔 설명할 수 있지 않을까? 그 밑은 누군가 한 번 해봤으면 충분하다. 집합의 기초론을 아무도 걱정하지 않고 사용하듯이 말이다. 이런 의미에서 확률론은 아직 집합이 AC나 CH를 가지고 고민하던 시절이나, 함수해석이 온갖 이상한 위상(pseudo norm으로도 정의할 수 없는 그런 것들)을 가지고 헤매던 시절과 같은 수준의 이야기를 써야 설명되는 것이라고 생각하는 듯하다.


기억력이 일천한 나는 이런 설명은 더이상 감당할 수가 없다. 학부 때, 대학원 때 몇 번 해본 것으로 더 파고들 힘이 남아있지 않다. 임박사가 이런 부분을 해결해 줄 수 있을까 하는 생각을 해 본다. (나에게 숙제를 준 반대 급부인가?^^)


블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

기하학을 설명하려니까 결국 기하학은 없는 이야기가 되고 만다. 좋은 일이다. 무엇을 이해하는 것은 그것이 아닌 것을 모두 이해하는 것과 원리적으로 똑같고 방법적으로는 이 편이 더 낫다. 그러나 기하학에 대해서도 할 말은 있다.


19세기 말 - 20세기 초반의 수학 및 물리학 발전은 우리에게 새로운 개념을 심어주었다. 리만이 한 일 (오일러가 단초를 놓은?)이 발단이 되었지만... 오일러 수, 한붓 그리기, 리만의 타원함수이론과 리만면,... 이런 것을 보면 문제의 해결에는 국소적인 계산과 이것을 이어 붙여서 전체를 바라볼 수 있게 해 주는 독특한 방법이 작용한다는 것이다. 즉 오일러 수가 뭔가를 이야기하는 것은 국소적 현상(꼭지점, 모서리, 면 등)을 잘 붙이면서 곡면 전체의 모양을 설명해 주는 무엇인가(실제로는 위상적 표현)를 얻는다는 것이다. 미분기하에서 이것이 적나나하게 보인다.


19세기가 끝날 때까지 미분기하는 이탤리에서 연구되었다. 이것도 리만이 미분기하를 공부하는 방법을 이탤리 학자들에게 넘겨주었기 때문이라고 보인다. (독일은 바이어슈트라스가 (또는 디리클레 빼고 모든 다른 수학자들이) 리만을 디스하려 했던 덕분에 리만한테서 아무 것도 못 얻었다. 리만을 독일은 디스하고 몽땅 이탤리에게 넘겨준 듯.) 이 이탤리 학자들이 연구한 것은 굽은 공간에서의 기하학적 미적분이었지만 이것은 완전히 국소적 이론이었다. 그리고 이것은 19세기가 끝나면서 이론 연구도 끝이 나서 당시 이것을 연구했던 사람들은 '이제 미분기하학은 끝났다' (망했다는 뜻이 아님, 더 이상 연구할 것이 없고 이제는 사용하기만 하면 된다는 뜻임.) 라고 호언장담했다. 하지만 오늘날의 입장에서 보면 '국소이론 끝 대역이론 시작'에 해당되는 시점이었다. 아니나 다를까 단지 몇년만에 돌멩이 한 개가 나타나서 세상을 뒤집었다. 아인슈타인이 특수상대성이론을 만든 것은 단순히 우주 어느 점에서도 (그 근처만 봤을 때 = 국소적으로) 물리학 이론이 똑같다는 가정과 당시 실험으로 알려진 빛의 속도가 정해져 있다는 사실만 가정하고 이룩한 것이다. 그러니까 국소적 가정만으로 전체가 어떻게 돼야 하는지를 알아낸 것이라고 할 수 있다. 그러니까 리만이 보여준 것을 물리에서 재현한 것인데. 물론 리만에 대해서는 눈꼽만큼도 모르면서 한 것이다. 어쨌든 덕분에 모든 사람들이 우리 우주는 어떻게 생겼지? 하는 문제를 제기하게 된 것 같다. 그리고 그것을 푸는 것은 국소적 물리 모델을 모두 모아서 전체의 위상 등등을 알아내겠다는 구상이 되었다.


당연히 기하학적 문제인데 이것을 해결한 것은 원래 오일러가 했던 것처럼 붙이는 부분을 잘 count해야 한다. 즉 대수학을 사용했고 결국 리만처럼 할 수밖에 없었다. 다시말하면 대수위상수학 문제로 귀결되었다. 그래서 호몰로지 이론을 개발하고 열심히 연구하게 되었는데... 여기까지 도달하는 데도 편미분방정식의 숨은 역사가...


사실 처음으로 이런 문제를 제대로 해결한 것은 일본의 숨은 해석학자 오카였다. 오카는 고차원 복소영역 안의 코시리만 방정식을 풀려고 했다. 2차원 복소원판의 곱 형태의 영역에서 적분으로는 쉽게 풀 수 있는데 그 밖의 영역에서는 방법을 알 수 없었다. 오카가 낸 아이디어는 이렇게 국소적으로 푼 해를 이어 붙여서 전체로 확장된 해가 존재하려면 어떤 조건이 필요한지를 연구하였고 이것이 대수위상적 조건이란 것을 알아냈다. 이것은 대학 1학년 미적분의 뒤쪽에서 벡터장의 포텐셜함수가 있는가 없는가 하는 문제와 본질적으로 똑같다. 그때의 답은 벡터장의 정의역 가운데 일종의 본질적 구멍이 있으면 불가능하다는 것이고 오카도 똑같은 식의 답을 얻었다. (진짜 구멍만은 아니지만...) 그러니까 편미방을 푼다는 것은 두 가지 일을 해야 한다. 각 점의 충분히 작고 모양도 예쁜 영역에서 푸는 것... 이것을 국소적 이론이라 부른다. 보통 함수해석학을 쓰는 것... 그 다음에 이것을 이어붙여서 공간 전체로 확장되는 조건을 찾는 것. 이것은 코호몰로지 이론이 될 수밖에 없다. 그러니까 해석학자들은 여기서 앞부분만 하고 있는데... 그것도 compactness를 잘 사용하는 방법 밖에는 모른다. (근사해를 찾고 이것을 계속 낫게 바꿔나가서 해로 수렴시키려고 하는데... 수렴하는지 보려면 우리가 찾아나가는 함수열이 compact 집합 안에 놓이는지를 보이면 되고, 이것은 거리를 잘 재서 해결하는 방법이다. 아마 아직도 모든 함수해석이 이런 방법을 벗어나지 않은 것이 아닐지 싶다.


결국 아직도 기하에는 못 들어갔네...ㅠㅠ


(계속)

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

제목을 '기하학이란'이라고 써 놓고 나서 세부 카테고리를 수학으로 할까 기하학으로 할까 잠시 망설였다. 수학이 더 맞는 것 같다. 그러나 그냥 누구나 생각하듯이 기하학으로 잡았다. 아무도 신경쓰지 않을 문제일까?


2-3일 기하학의 한 가지 문제에 대한 오타교수의 개요논문 번역을 마저 하느라 시간을 들이고 나서 열심히 노력하는 임박사에게 전해주며 페북에 쓴 글을 보니 거리와 위상이 있는 수학이 해석학이라고 주장해서 딴지를 걸었다. 왜 거리와 위상을 가지고 하는 것이 기하학이지 해석학인가? 요즘 해석학은 아마도 비선형 함수해석학에 확률도 들어가다 보니까 거의 기하학 근처에 와 있는 것 같다. 그래서 해석학이 언제 위상과 가까워졌는가를 더듬어 보았다.


해석학의 시작에 있는 극한 개념을 사용한 미분은 비록 이것이 위상 개념의 시작인 것은 맞지만 오늘날 말하는 본격적인 위상수학이라고 하기는 어렵다. 그러니까 본격적 위상수학이란 위상이 해석학에 사용된 것을 말하고 이것은 위상수학이란 말이 생기기 좀 전에 일어난 일이다. 나는 그것을 리만이 타원함수 이론을 보고 단박에 이것은 곡면을 보지 못하고 평면의 영역으로 해석하려 해서 잘 못 풀고 있는 것이라는 사실을 알아보았을 때라고 생각한다. 이것을 보면서 곡면 위의 (복소)해석학과 함께 곡면이 주는 정보를 단순하게 이해할 수 있는 기틀을 마련했다. 생각으로만 있었던 이 신 개념은 베티가 리만에게 병문안 왔을 때 또는 리만이 이태리에 갔을 때 베티에게 전수되었고 베티는 베티 넘버를 만들어 대수위상수학을 전개해 나갔다. 오일러가 처음 한붓그리기와 오일러 수로 시작한 문제제기의 현대적 답을 준 것이라고 하겠다. 그러나 물리학은 20세기에 들어오면서 두 가지 큰 변혁을 맞게 되고 앞의 문제(빛의 속도)는 아인슈타인이 밍코브스키가 만들어 놓았던 미분기하의 개념을 사용하여 카르탕의 결정적 도움으로 해결하였으며, 두 번째 문제(양자 문제)는 힐버트를 위시한 여러 학자들의 아이디어를 종합해서 해석학으로 해결하는 방향을 택했다. 아직도 완결짓지 못했다는 양자역학이다. 이 과정에서 편미분방정식의 이론적 풀이가 중요해졌고 위의 여러 사람이 제안한 무한차원의 선형기하가 꼭 필요했다. 기하 중에서도 꼭 필요한 것은 위상 개념을 동원한 극한의 계산이었고 이것이 없으면 우리가 구체적으로 다룰 수 있는 유한차원선형대수를 무한차원선형대수로 확장할 수가 없었다. 힐버트가 가이드하는 대로 이것을 전개해 나가서 오늘날의 함수해석학이 되었다.


이에 들어가는 위상은 해석학을 위한 위상이 맞다. 하지만 이 이론을 잘 들여다보면 모두 다 어떤 norm 종류들 사이의 크기 비교 부등식이다. 즉 어떤 식의 거리 비교를 하고 있는 것이고 이것은 비록 해석학에 사용되기는 하지만 당연히 기하학이다. 임박사가 헛갈리는 것도 이해가 간다. 미분가능성을 재는 척도를 거리로 나타냈는데, 이제 이 것리가 어떠어떠하니까 대상은 미분가능하다고 한다면 이것이 해석학인가 기하학인가? 그러니까 두 함수 f, g에 대해서 {f+g}(x) = f(x) + g(x) 를 계산하는데 덧셈을 한 것이니까 대수학인가 아니면 함수를 계산한 것이니까 해석학인가? 이 부분만을 보면 잘 모르겠다. 하지만 덧셈의 대수적 성질이 중요한 역할을 하면 대수학에 가깝고 덧셈 계산만을 쓴다면 해석학에 가깝겠지. 그러니까 거리랑 위상도 거리, 위상의 기하학적 성질을 사용하면 기하학에 가깝고 단지 거리 위상은 말만 나오는 것이라면 해석학에 가까울 것이다. 이름에 붙은 함수해석학(정확히는 '범함수 해석학')은 당시의 새로운 학문의 하나로서 해석학이라는 말이 붙은 것이다... 마치 위상수학은 당시에는 위치의 해석학(analyse situs)라고 붙은 것처럼... 그 이전의 수학은 계산법(=미적분=calculus=ODE)와 (복소)함수론과 새로운 대수학과 기하학으로 나뉘어 있었는데 이 situs도 functional도 그 때까지는 못보던 것들이어서 여기다 분석(해석)이라는 이름을 붙였는데 이 당시 시작된 것이 모두 PDE 이론으로 수렴되다 보니까, 즉 모든 이론을 제대로 전개하고 나서 보니까 PDE만 해결하면 되는 상황이 되어서, 함수의 새로운 이론이 해석학으로 굳어졌다고 보인다. 물론 미분기하학의 문제 (대표적으로 극소곡면)도 PDE로 귀결되었고 이런 입장에서는 미분기하학도 해석학 같이 된 것이 맞다.


20세기 함수해석학이 수학에 엄청난 영향을 끼쳤지만 이것은 결정적으로 선형이론이라는 한계를 가지고 있었다. 그러니까 국소이론 밖에는 되지 못하는 것이다. (나는 처음에 이 말을 이해할 수 없었다. 벡터 공간 전체에서의 이론은 국소이론이고 벡터 공간의 열린 부분집합에서의 이론은 대역적 이론을 포함한다는 것이 무슨 말인가...? 를...) 즉 사람들이 진짜로 풀고 싶은 문제는 비선형 문제이고 이것은 본질적으로 우리가 보는 함수(PDE의 잠재적 해)를 모두 모은 공간이 굽어있다고 생각해야 한다는 것이다. 즉 무한차원 곡면을 생각해야 한다면 다시 본질적인 기하학 문제가 대두된다. 20세기 말의 해석학은 이 근처에 서서 비선형으로 들어갈까 말까를 저울질하고 있는 것 같다. 아니면 들어가야 하는데 발 디딜데도 없고 문도 잘 안보여서 우왕좌왕하고 있다고 할까...


(계속)

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

페북 수학그룹에 올라온 질문 중에 "고교 수학 교육과정을 따라가며 힘들거나 아쉬웠던 부분"에 대해 질문한 것이 있다. 많은 사람들이 대답을 해서 댓글이 많이 달렸는데 댓글마다 여러 이야기가 있다. 이 중의 몇 개에 대한 댓글을 여기다 단다. (순서는 대략 댓글 순서다.)


기하에서 보조선 긋기 기하에 보조선을 긋는 방법을 설명해 주지 않아서 답답하다는 것이 여러 사람이 느끼는 것일 것이다. 기하의 보조선 긋기는 왜 중, 고등학교에서 배우는가 하면 이렇습니다. 이것 자체는 우리가 실생활에 꼭 필요한 것은 아닙니다. 우리가 논증기하와 보조선에 의존하는 기하를 배우는 목표로 2차원, 3차원 공간지각능력을 키우는 것이 매우 중요하기는 합니다. 그러나 이것 뿐이 아니라 더 중요한 것이 있습니다. 이는 꼭 필요한 능력을 키우는 와중에 수학에서는 하나의 완성된 이론의 전범을 보여줍니다. 

   그러니까 기하를 배우면 몇 가지 기본되는 정의, 정리 등을 배우는데, 이것을 실제에 활용하게 되면 정리만으로는 불충분하고 실제 문제를 다루는 법을 익히게 됩니다. 이 다루는 법이라는 것은 한두 마디 말로 설명할 수 없고 실제로 사용하는 사람들을 보면서 스스로 터득해야 되는 것입니다. 그러니까 기하를 빌미로 수학이란 이렇게 공부하는 것이라는 것을 한 번 보여주고 싶은 것인데, 이론과 공식만 가지고 사는 것이 아니라 이것을 적재 적소에 아이디어를 내서 적용하는 것이 진짜 공부하는 것임을 잘 볼 수 있는 쉬운 수학이 기하이기 때문입니다. 

보조선 하나 찾기가 이렇게 어려운데도 이것이 쉽다고 말하는는 것은 이것은 그래도 눈에 보이는 대상이고 문제니까 답을 알면 자기가 무엇을 하고 무엇을 못하는지 알 수 있으니까 그런 것이지요... 그래서 쓸데 없어보이는 문제더라도 꼭 한 번 가르치고 싶은 것입니다. 혹시 배운 것을 써먹는 방법을 익혀야 한다는 것을 더 잘 알 수 있는 과목이 생긴다면 아마도 기하는 교육과정에서 없어질지도 모릅니다. 요즘 중요해지고 있는 내용은 이산수학과 기하학입니다. 이 과목에서도 몇 가지 공식만 배우는 것은 아무 쓸모가 없습니다. 헤매면서 이런 도구를 어떻게 쓸 수 있는지 알아내는 것이 꼭 가르치고 싶은 것이지요. 대학에서 보조선 긋는 문제 필요없다고 안가르칠 그런 문제가 아닌 것이지요.


솔루션 매뉴얼 솔루션 매뉴얼 없이 공부하는 것이 가능한가? 하고 질문한 사람이 있었다. 당연히 가능합니다. 우리가 공부할 때는 솔루션 매뉴얼 하나도 없었어요. 책의 뒤에 홀수번 답조차도 없었지요. 그래도 다 공부하고 잘 했습니다. 내가 솔루션 매뉴얼을 잘 활용한 한 번은 대학원 학위 자격시험 때였습니다. 그 때 이것을 써 보고 시험을 위한 준비, 그리고 주어진 내용을 짧은 기간 내에 일정한 수준까지만 정말 잘 이해하려면 솔루션이 아주 효과적이라는 것을 알게 됐습니다. 학교에서 시험을 잘 보려면 솔루션 매뉴얼을 잘 활용하는 방법이 있습니다. (그냥 보고 외우는 것은 별 도움이 안 된다.) 그러나 제대로 수학을 이해하는 데는 이것은 별로 좋지 않습니다. 자기만의 생각으로 설명해 내는 연습을 많이 해야 합니다. 솔루션을 참고하지 말라는 선배가 조금 있다는 말은 아직 잘 모르는 것이지요. 수학을 제대로 배우고 연구하는 사람은 모두 그것을 사용하지 말라고 할 것입니다.


증명 증명을 제대로 하지 않고 풀이법만 가르치는 우리 현실을 지적한 댓글도 있다. 물론 한 가지만 가르치는 것은 나쁘지요. 증명에 대해서 이야기한다면 증명은 몇 가지 효능이 있습니다. 우선 증명은 논리적으로 완벽한 하나의 체계를 갖추는 방법입니다. 이것도 없으면 제대로 하는 것이 아닙니다. 둘 째, 증명을 따라가면서 내용을 머리 속에서 그림으로 그릴 수 있다는 장점이 있습니다. 뭔지 알 수 없는 것을 이해하는 데 증명을 따라서 이해하는 것도 한 가지 방법입니다. 셋 째, 내가 생각하는 것이 맞는지 확인하는 방법으로 증명이 효과적입니다. 내 생각에 빠진 틈은 없는지 보려고 하면 증명해 보다가 찾을 수 있습니다. 증명은 수학에서 한 가지 방편이고 전부는 아닙니다. 수학을 이해하는 데는 계산도, 그림도, 응용문제 풀이도 모두 중요하다. 물론 증명이 중요합니다.


교과서 "학생들의 why를 해결해 줄 수 있는 완벽한 교과서를 보고 싶어요."라고 했고 물론 그 댓글에 완벽한 교과서란 없다고 누군가 말했지만... 왜에 대해서 답하지 못하는 수학은 물론 문제가 많은 것이지요. 만족할만한 답을 할 수 없는 이유 또한 어쩔 수 없는 것이지만요. 만족할만한 답은 그 내용을 다 알고 이해하고 난 다음에야 있는 것이니까요. 단지 충분한 동기를 주는 것은 중요합니다. 시간이 문제지요.

   교과서가 이런 역할을 못하는 것에 대해서는 역사도 조금 봐야 합니다. 우리나라가 일본의 손에서 벗어나서 우리가 가르치게 됐을 때는 우리나라가 너무 경제적으로 열악해서 교과서를 사서 볼 수 있는 사람이 거의 없었지요. 그래서 나라는 교과서를 정말 싸게 보급하기로 했습니다. 그런데 책이 너무 두꺼우면 책값이 비싸지므로 책의 분량을 제한하기로 한 것 같습니다. 이것은 지금까지도 이어져서 고등학교 수학교과서는 몇 쪽 이내로 쓴다 하는 제한이 있지요. 대신 교과서 값은 정말 쌉니다. 이제는 선택해야 하지요. 미국처럼 수백쪽이나 천쪽이 넘는 책을 만들고 돈을 좀 내도록 할 것인지...


교육과정 새 교육과정에서 구분구적법이 빠진다거나 수열의 극한 없이 함수의 극한을 배운다거나 하는 것은 물론 여러 가지 이유를 가졌을 것이고 댓글에 언급한 이유도 있을 것입니다. 특히 이것이 없으면 나중에 여러 가지 분야에서 수학을 사용할 때 개념적으로 문제가 생길 수도 있습니다. 그런데 이것을 안 배워도 논리적 문제가 없는가 하는 것은 꼭 문제가 되는 것은 아닙니다. 지금까지 우리가 배운 수학도 수학을 전부 배운 것은 아니니까 필요한데 모르는 것이 많았지요. 새 교육과정이 무엇인가 조금 빼도 그런채로 공부한 다음 필요한 것은 스스로 알아서 처리하면 되는 것은 맞지요... 새 교육과정에서 문제인 것은 뺀 것은 그렇다고 해도 이것이 새로운 내용이 더 들어가야 해서 예전 것에서 몇 가지 빠지는 것이 아니라는 것입니다. 즉 배우는 내용이 줄어드는 것이지요. 그런데 이것보다 더 중요한 것은 빠지는 것이 체계적이지 못하다는 것입니다. 3차 교육과정 정도에서는 하나의 완벽한 체계로서의 수학을 가르쳤습니다. 비록 이 대부분이 미국과 일본의 체계를 적절히 조합한 것일지라도 그 체계는 매우 훌륭했는데요. 지금의 교육과정은 이런 체계는 무시하고 수준만 맞춘 이상한 것으로 바뀌고 있습니다. 

   예를 하나만 든다면 맨 처음 교육과정에서 빠지게 된 "원순열"이란 것이 있습니다. 이것은 물건들을 동그랗게 늘어놓는 방법의 개수를 세는 것인데요. 특히 염주순열이라고 빨간 염주 몇 개와 하얀 염주 몇 개를 이어서 동그란 목걸이를 만들 때 나타나는 모양의 개수를 세는 문제가 복잡합니다. 염주순열이라고 불렀던 듯합니다. 이 문제가 왜 있는가 하면 경우의 수(합의 법칙과 곱의 법칙)를 배우고 기초적인 공식인 순열과 조합을 배우고 나면 이것을 현실에 활용하는 방법을 가르쳐줘야 합니다. (그러니까 기하에서 보조선 긋는 것에 해당하지요.) 이 모든 것을 한 문제에서 보여줄 수 있는 것으로 염주순열이 아주 적당합니다. 경우를 조금 나눠야 하고 각 경우에 개수를 세는 것은 공식을 사용할 수 있고, 세기의 기초가 되는 도형을 활용합니다. 그러니까 아주 훌륭한 연습문제입니다. 그래서 순열, 조합 단원의 맨 마지막을 장식하는 단 한 문제였지요. 이 문제는 당연히 앞의 다른 문제보다 어렵습니다. (이것은 기하에서 단순한 삼각형의 각의 계산 같은 것보다 보조선 긋는 문제가 어려운 것과 똑같지요.) 이것을 빼면 순열, 조합 단원이 절름발이가 되는 것입니다. 꼭 마찬가지로 삼각형, 사각형 평행선 다 배운 다음에 보조선을 하나라도 학생이 그려야 하는 문제는 못 물어보는 것과 똑 같습니다.

   제가 보기에 염주순열을 뺀 사람은 염주순열이라는 좋은 말이 있어서 요것만 빼자 한 듯이 느껴집니다. 기하에서는 보조선 긋는 문제에 다른 이름이 없어서 빼지 못하는 것이 아닐까 생각이 듭니다. 대신 기하에는 다른 말을 하지요. 기하 문제는 전부 어려워서 기하를 모두 빼자는 말을 하는 사람이 있는 것 같습니다. 왜 이런 생각을 하는 것인지 이해가 안 되는 것이 정상이지요.


학원 고등학교 수학을 학원가지 않고 스스로 공부하면 제대로 할 수 없을 것 같다는 말을 한 사람이 있다. 당연하고 또 그렇지 않기도 합니다. 문제는 짧은 시간(예를 들면 2년) 안에 우리나라 입학 시험에 합격할 만큼을 하려면 누군가의 도움이 있어야 한다는 것입니다. 우리 교육과정은 무엇이 문제인가? 외국은 어떻게 하는가? 하고 생각해 보지요. 고등학교 공부는 교과서와 문제집 가지고 혼자서도 공부할 수 있습니다. 시간이 문제입니다. 외국에서는 수학을 잘 모르겠으면 조금 못한 (어떤 때는 많이 나쁜) 대학에 들어가서 천천히 수학을 공부해도 됩니다. 고등학교도 1년 더 다녀도 됩니다. (반대로 빠른 사람은 2년에 졸업해도 됩니다.) 우리나라에서 이것이 안 된다면 (학교가 하게 해 줘도 안된다면 이란 뜻입니다) 그 이유가 무엇인지 생각해 봐야 합니다. 이것은 수학이 해결해줄 수 없는 것이지요. 적어도 나중에 취직할 때 고등학교 1년 더 다녔다는 것이 문제되지는 않는다는 것을 저는 압니다. 저라도 그런 것은 문제삼지 않을겁니다. 일을 잘 하는가가 관건이지요. 


엄밀하지 못한 강의 "미적분 정의도 모르고 공부했다"고 불만인 사람도 있다. 이 문제에 대해서 선생님은 대학에 가서 배운다고 설명해 주지 않았다고 하는데, 이에는 두 가지 면이 있지요. 우선 입시 문제를 풀기 위해서, 특히 많이 이론적으로 어렵지 않은 선다형 문제라면 생각을 많이 하면 점수에는 불리합니다. 그래서 선생님이 내용을 많이 또는 제대로 설명하지 않으려는 부분이 있습니다. 또 하나는 수업 시간이 많지 않은데 제대로 된 설명과 "왜"에 대한 질문 대답 등은 많은 시간을 잡아먹기 때문에 선생님들이 이를 잘 안 하려는 것입니다. 또 이러다 보니까 선생님들이 잊어버리고 잘 모르게 되기도 하지요. 하지만 수학을 제대로 익히려면 이런 질문이 중요하고 이를 설명해 주는 많은 예와 반례를 알아보는 것이 중요하지요. 이 과정이 실제로 문제 풀이와 연계되는 것이고요. 그런데 현재 우리 수업은 이런 것이 불가능합니다.


수1의 어려움 고등학교 후반부의 미적, 기벡 등에 비해서 수1 부분이 더 어렵게 느껴진다고 말하는 사람이 있다. 이것은 하나도 이상한 것이 아닙니다. 수1 부분은 보통 대수와 기하라고 하는 기본 사고 및 계산 방법입니다. 어떻게 보면 이것은 아무리 오래 공부해도 더 공부할 것이 있는 부분입니다. 우리 같은 수학자가 평생을 공부해도 계산방법은 극히 일부밖에는 모를 정도이죠. 그러니까 익숙해져서 쉽게 계산을 활용하고 그림을 머리에 그릴 수 있게 되려면 많은 연습이 필요합니다. 오히려 미적분은 몇 가지 계산방법만 배우면 고등학교 수준에서는 더 생각할 것이 없죠. 즉 미분가능한 함수를 미분하는 것은 아주 쉬운 문제입니다. 적분에서도 치환적분과 부분적분을 다룰 수 있게 되면 충분하고 이조차도 대부분 수1 식의 계산이 복잡해서 잘 못할 뿐이지요. 

   미적분이 수1 보다 더 고급 수학인 이유는 모든 점에서 미분이 가능하지는 않은 함수들을 다루다 보면 아주 복잡해서 머리 속에 그림을 그리기 어려운 것들이 나타나고 이것을 잘 알아내기 위해서 많은 계산을 해 봐야 하는 문제가 나오기 때문이죠. 이것은 대학 수학을 다 공부해도 여전히 어려운 문제이고요. 심지어는 어려운 적분을 모두 잘 이해하는 것보다도 더 어려울 때가 많아서 미적분이 수1의 내용보다 더 나중에 개발되고 아직도 이론을 연구중인 이유이지요. 고등학교는 미적분 문제에서 한계를 딱 지어 놓았으니까 어렵지 않지요. (수1 부분은 한계가 없어요. 1700년대까지 계산하던 내용이므로 고등학생들은 이것을 모두 잘 알 수 있어야 한다는 것이니까요.)


문제의 유형 시험문제가 유형 위주로 되어 있는 것이 싫다는 답글이 있었다. 문제를 풀 때 처음 본 문제라고 생각하고 풀면 시간이 많이 걸리는 문제를 내고 유형에 따라 생각하지 말고 풀라는 것은 요즈음 고등학교 문제들이 가진 가장 나쁜 문제점이다. 이 교과과정의 내용을 결정하는데 결정적인 역할을 하는 분들이 수학 문제를 이렇게 푸는 것이라고 생각하고 있는지 모르겠다. 그래서 유형에 따라서 답을 찾을 때 간단하게 적히는 (정답지만 봐서 몇 줄 안되는) 문제가 쉬운 문제라고 생각하는 듯하다. (선생님들은 이런 문제만 가르친다면 선생님 스스로 생각하고 스스로 공부할 필요가 없어지니까 일이 쉬워진다.) 하지만 이런 문제를 처음 보는 문제라고 생각하고 들여다보면 정말 많은 생각을 하게 된다. 이 문제들이 결코 쉽지 않은 문제라는 뜻이다. 이런 문제를 짧은 시간에 풀라고 하면 어쩔 수 없이 유형별 풀이법을 생각없이 (이것도 이유를 생각하면 시간이 많이 뺏긴다) 풀어나갈 수밖에 없다. 교육적으로도, 나라의 경쟁력을 생각해도 가장 나쁜 교육의 표본이다. 단지 행정하는 사람들만 교육의 문제들을 설명하는데 드는 노력이 없어 편한 것이 아닐지?


블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

오늘 새벽에 페북에 데이터 분석을 하려면 수학을 얼마나 공부해야 하나 하는 질문이 있었다. 아마 모든 사람들이 궁금해 하는 질문일텐데 대부분 조금만 하면 좋겠는데 무엇을 해야 하는가가 궁금할 것이다. 데이터 분석에 관심이 부쩍 늘어나는 중이라 나도 이 질문의 답이 궁금하다. 답글 달린 것처럼 많이 알면 좋겠지만 시간이 부족하니... 


인터넷을 통해서 알게 된 웹페이지 하나를 보면 몇 가지 수학을 들고 있다. pie chart를 써서 나타내 준 것에는... linear algebra, prabability, statistics, multivariate calculus, algorithm & complexity 등등이 있다고 되어 있다. 이것은 아마도 누구나 알아야 하는 것이겠다. 앞의 세 가지는 꼭 필요한 것이고, 뒤의 algorithm 등은 코딩을 조금은 알아야 하니까, 또 날코딩은 안 하더라도 남이 만들어 놓은 코딩은 이해할 수 있어야 하니까... 그리고 요즘의 deep learning은 무슨 1억개 변수인 함수의 최대최소를 다룬다는 사실 정도는 파악할 수 있어야 하니까 다변수해석학의 개념은 잘 가지고 있어야 한다.


이것만이면 되는가? 글쎄 잘 모른다. 지금 새로 생긴 분야. 이제부터 왕창 발전할 분야를 제대로 사용하려면 무엇을 알아야 하는가라고 물어보면 지금 아는 사람은 없다. 단지 유추해볼 수 있는 몇 가지 곁가지 사실을 보자. 


1970-90년대에 데이터분석을 위해서 많은 사람들이 공부하던 것이 있다. 소위 조합론(combinatorics)인데 특히 기하학적 조합론 또는 조합론적 기하학(combinatorial geometry)이다. 당시에 마구 주어진 데이터(보통 고차원이다)를 공간에 찍어놓고 구조를 찾으려고 이 점들을 연결해 놓고 연구했다. 이것은 graph라고 부르는 것인데 이것들에 대해서 알려진 사실들이 많다. 새로운 시대의 데이터 분석은 이런 기법을 활용하는 것도 한 몫 할 것같다. 이런 수학 지식은 위에 나열한 데에는 없다. (사실 이것은 비교적 이해하기 쉬운 수학분야쪽에 들어간다.) 


많은 수를 다루는 데서 가장 기본적인 도구는 특정한 종류의 대상이 몇 개인가를 세는 것이다. 이것을 counting이라고 하고 사실 수학에서 제일 어려운 문제들이다. 고등학교 때는 경우의 수라고 해서 배운 것인데 몇 개의 공식만을 활용해서 문제를 풀 수 없는 독특한 과목이었다. 대부분 수학과목이 몇 개의 공식만 잘 이해하면 끝나는데 그렇지 못한 분야가 몇 개 있다. 조합론이 그런 분야이고 고전 논증기하가 그런 분야이다. (counting을 요즈음은 초등학교에서 `헤아리기'라고 부른다고 들었다.) 그런데 데이터를 다루려면 이 counting이 기본이 될 수밖에 없고 이것은 컴퓨터만으로는 잘 셀 수 없다. 최근에 우리나라 수학계에 혜성처럼 나타난 허모박사도 세상에서 가장 어렵다는 대수기하학의 방법을 써서 아무도 못 푸는 counting하는 문제도 풀고 해서 유명한 것이라 한다. 이것이 현실과 동떨어진 것이 아니라 데이터 분석에 바로 사용될 수도 있을만한 내용이라는 점이 함정이다.


배경지식은 이만큼 하고, 그러니까 데이터 분석을 하려면 수학을 얼마나 공부해야 할까? 


이렇게 이야기하자. 내가 보는 바로는 미래에 데이터를 분석하는 사람은 한 가지 관점에서 보아 두 가지 그룹으로 나뉜다. 관점은 수학을 얼마나 사용하는가이고, 두 가지 그룹은 당연히 수학을 조금만 쓰는 사람들과 많은 수학을 필요에 따라 찾아보면서 사용할 수 있는 사람들이다. 이사람들은 어떻게 다를까. 수학을 조금만 쓰는 데이터 분석가의 수는 매우 많아질 것이다. 특히 새로 나오는 컴퓨터 기법을 익히고 수학을 조금만 쓰는 사람은 예전의 기법을 배운 사람들보다 경쟁력이 높을 것이므로 기업/개인은 계속해서 젊은 사람들을 싼 값에 쓰려고 할 것이고 과당경쟁으로 출혈경쟁이 될 가능성이 많다. 지금도 여러 가지 일에서 이런 현상을 많이 본다. 예를 들면, 지금도 하지 말라고 하는 날코딩하는 기사와 비슷한 처지가 될 가능성이 높다. 한편 수학을 많이 이해하고 사용할 줄 아는 데이터 분석가는 나름 경쟁력을 가질 것이다. (수학을 잘 아는 사람은 항상 수가 매우 적다는 가정이다.) 이런 사람을 필요로 하는 곳은 지금보다 매우 늘어날 것으로 보인다. (단지 내 바램만은 아니다.) 따라서 이 사람들은 몸값이 올라갈 가능성이 많다. 즉 이 직업에서도 극과 극으로 갈라질 것으로 보인다. 


미래는 모든 것이 이렇게 극과 극으로 갈린다. 한 동안은 그럴 것이다.(아마도 10-30년. 그리고 그 이후는 전혀 감도 안 간다.) 이럴 때는 차별화돼야 한다. 다시 말하면 조금만 준비하면 들어올 수 있는 부분은 너도 나도 경쟁해서 결국 도움이 안 된다. 전 세계 사람들에게 완전히 까 놓고 "나는 이렇게 이런 것을 한다"고 알려줘도 따라 들어오기 어려운 것을 적어도 하나 가지고 있어야 제대로 된 위치를 가질 수 있을 것이라고 생각된다. 이제부터 경쟁은 전 세계 경쟁이니까 국내 법에 근거한 어떤 보호장치도 작동하지 않을 것이다. (이미 수십년 전부터 미국의 모든 AS 응대 서비스는 인도 같은 곳에서 한다. 물론 질이 매우 저하 됐다. 하지만 비싼 돈을 쓰면서 고급 AS하는 회사는 더 이상 없다. 우리나라 삼성/엘지만 그런 듯하다.


이런 미래를 생각하고 데이터 분석도 생각해야 할 것이다. 

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

안그래도 미래를 계획하는 공부를 하고 있는 중이다. 필요한 일이 있기도 하다. 요즘 읽어보는 글들을 보면 미래를 사는 사람들은 자신의 생애에 평균 10번도 넘게 직업을 바꿀거라고 한다. 어떻게 그런 예측을 하는지 잘 모르겠지만 지금 추세대로라면 그런 일이 벌어진다고 놀라지 않을 듯하다. 그런데 수학을 가르치면서 보면 요즘 학생들은 꼭 필요한 공부만 쏙 빼놓고 하고 있다는 느낌이 든다.


미래를 살려면 무엇을 알아야 할까? 미래에도 수학공부를 해야 하나? 미래에 잘 산다는 것은 어떤 것일까? 이런 질문을 해 보지만 알 수 있는 것은 하나도 없다. 페북에서 본 어떤 미래학자가 이야기한 것처럼 지금은 사회가 대대적으로 변하는 변혁기이다. 아마도 르네상스가 시작하던 시기, 산업혁명으로 정신없던 시기, 조선이 생기던 시기, 조선 말기의 혼란기, 6.25를 지나고 정신없이 일하던 시기보다 더 심한 변화가 생길 것 같다.


전공이 수학이라 "미래에도 수학공부를 해야 하나?" 하는 질문은 자주 생각한다. 답은 yes와 no가 혼재한다. 본질적으로 생각안하고 살 수 있는가? 하는 것이 질문의 핵심이다. 생각을 해야 한다면 수학공부를 해야 한다. (수학은 생각의 핵심이다.) 혹시 생각하지 않고 살 수 있다면 공부는 안 해도 된다. 이 이분법이 마음에 들지 않으면 혹시 생각은 해야 하지만 뭔가 좋은 기계가 생겨서 대신 생각해준다면...? 하고 상상해 볼 수 있겠다. 모르기는 매한가지지만 혹시 200년쯤 후에는 이런 일도 가능하겠지만 아마 20년 정도 후에도 사람은 자기가 생각해야 할 것이 많을 것 같다. 


그러니까 good news인 no라는 답 부분은 지금 공부하는 수학은 많이 안 해도 될거 같다는 것이고, bad news인 yes라는 답 부분은 지금 수학은 필요 없지만 다른 수학이 나타나서 나를 공부해라 할 것 같다는 것이다. 지금 공부하던 수학은 어떻게 되는가? 또 잘은 모르지만 이런 것을 생각해 보면 어떤가? 그러니까 요즘 나오는 컴퓨터 프로그램들은 예전에 손으로 고생해서 하던 계산을 모두 시간도 안 걸리고 계산해준다. 틀리지도 않는다. 이런 것은 예전만큼 고생하며 익힐 필요는 없는 것 같다. 


예를 들자. 

더보기


이런 생각을 하면서 지금의 공부 단계를 보자. 고등학교 1학년에 온 힘을 바쳐서 연습하는 것은 이런 다항식 계산이다. 그런데 그 원리와 작동 방식은 자주 봐서 잘 익혀나가야 하지만, 틀리지 않으려는 연습을 빼도 된다면 아마도 필요한 시간이 반도 안 될것이다. 그러니까 배울 수 있는 내용은 늘어난다. 예전에는 계산이 안 되는 사람은 미적분을 못 배운다고 생각했을 것이다. 하지만 꼭 그런 것은 아니다. 지금 나는 나이가 들어서 계산하면 항상 틀리지만 미적분은 학생 때보다 더 잘 알고 있다. 그러니까 계산을 꼭 알아야 하지만 미적분을 잘 알기 위해서 계산을 꼭 틀리지 않아야 하는 것은 아니다. 그러니까 미적분을 일찍 배울 수도 있다. 그리고 아는 사람은 다 알지만 미적분은 사실 별로 많은 것을 익히지 않아도 된다. 정말 많은 연습이 필요한 것은 다항식과 함수의 계산이지 미적분 개념이 아니다. 


미래를 보면 지금은 없는 여러 가지 새로운 직업이 난무한다. 이것들은 모두 창의적 생각이 가미된 직업이고 단순노동 (계산도 여기 포함된다) 같은 것은 안 해도 되는 직업뿐이다. 그러니까 물리적 단순노동은 로봇이 해주게 되고, 정신적 단순노동은 컴퓨터가 해 준다. 사실 고급 정신노동도 컴퓨터가 leaning을 가지고 해결해 주려고 하고 있을 것이지만 이것이 얼마나 믿음직스러운지는 확실치 않다. 적어도 지금은... 그러니까 생각을 제대로 하기 위해서 "수학적 생각" 방법을 연습하는 것은 매우 중요하지만 수학의 공식을 바로 쓰고 싶어서 그런 것이 아니라, 수학에 나타나는 정말 여러 가지 아이디어 가운데 한 가지씩 필요에 따라 뽑아 쓰고 싶은 것이다. 즉 미래를 사는 사람들은 정말 많은 수학을 알아야 할지 모른다. 내가 전공하는 리만기하학의 내용도 모두 다 알고 그 핵심인 접속connection이 어떻게 벡터장 같은 변화하는 물리적 양을 미분해주는지를 이해하고 있을지도 모른다. 단지 그것을 계산하라 했을 때 나타나는 텐서 계산을 손으로 하는 것은 안 해봐도 될 것 같다는 것이다. 이것은 이미 컴퓨터가 잘 한다.


이런 생각 끝에 상상되는 것은 미래에는 배우는 수학의 양이 늘어난다는 것이다. 단지 배우는 데 만 보면 시간은 훨씬 덜 걸릴 것이다. (계산 연습이 많이 빠지니까. 완전히 빠지지는 않지만...) 즉 지금 우리나라에서는 선행학습 금지당한 많은 것들을 겉핥기 처럼이라도 알고 나갈 것 같다. 그리고 그것을 잘 아는 것처럼 자유자재로 활용할지도 모른다. 컴퓨터의 도움을 옆에서 받으면서... 그리고 이런 능력을 가진 사람들, 특히 예술적 창의성을 적용하는 데, 그 대상이 지금은 박사를 받아도 들어본 적도 없는 수학 공식들이고 그것도 지금 한 명의 박사가 아는 내용의 10배나 100배를 자유자재로 활용하는 수준인 그런 사람들이 온 세상에 깔려 있는 세상이 상상된다면...? 이런 사람들을 키우려면 이제는 어떻게 가르쳐야 할까?


이런 사람이 되려면, 공부할 때 새로운 아이디어가 들어있는 이론에서 아이디어를 재빨리 파악하는 능력이 필요하고, 그런 기본적 구조에 컴퓨터의 계산력을 곧바로 적용하는 능력이 필요할 것이다. 그리고 이런 일 하느라고 매 번 컴퓨터를 기본 언어에서 부터 코딩하는 것은 말도 안 된다. 당연히 최 첨단의 언어, 모든 코딩이 다 구비되어 있는 프로그램에서 그 기능을 최대한 활용하여 시간이 걸리지 않고 이 복잡한 과업을 해낼 수 있어야 할 것이다.

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요


why_math.pdf


이 글은 길어서 본문을 파일로 올려둡니다.


간단히 서론만 다음과 같습니다.





페북에서 학생들 상대로 수학 공부의 필요성에 대해 설문조사한 기사를 보았다. 이 기사의 내용은 물론 이해되는 것이지만 거기 나타난 학생들의 의견은 물론 수학을 많이 공부해보지도 않은 것이고 또 삶을 살아본 다음에 하는 이야기도 아니므로 그렇게 중요하지는 않다. 단지 현장의 학생들은 수학 공부를 어떻게 느끼는가를 말해주는 정도이다. 물론 내가 공부할 때도 이거 어디 쓰는지 잘 몰랐지만 수학을 잘 하는 사람들을 많이 보고 그 사람들의 말을 믿기 때문에 나중에 중요하게 된다는데 의문을 가지지 않았다. 요즘 학생들이 더 빨리 비판적이 되는 것인지? 아니면 그냥 잘 못하니까 싫어서 하는 이야기인지? 잘 모른다.

이 기사에 댓글을 단 친구들 중에서 특별히 비교적 정확한 댓글을 단 한 친구의 글 가운데 ``가령 변호사/판검사가 되기 위해 수학 1등급을 받아야 하는건 분명 잘못되었다고 생각합니다.'' 라는 표현에 내가 딴지를 걸었다. 정말 그런가? 나중에 수학을 잘 안 쓰게 될 사람은 예를 들어 고등학교의 어려운 수학 같은 것은 배울 필요가 없는가? 특히 이런 것을 잘하는 것은 나중에 쓸모가 전혀 없으니까 시간낭비일까?

이 글에서 이런 질문에 답을 해 본다. 단지 내용 중에 대학 수학의 내용도 조금 있다. 읽는 사람의 이해를 돕기 위한 것이지만 모르는 사람들은 빼고 읽어도 될 것이다.


블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

수학과 교수를 30년 넘게 했다. 다음 링크의 글이 수학과 졸업 후의 진로의 실상과 허상을 이야기한다. 사실이든 아니든 이 글은 상당히 설득력 있다. 현장을 몰라서 이런 생각을 못하는 것이 아닐 것이다. 수학이 무엇인가를 알게 되고 이것으로 무엇을 할 수 있는지를 생각해 보면 이 글의 내용이 상당히 그럴듯하다는 것을 알게 된다. 비록 미국에서 가장 좋은 직업이 수학과 졸업생에게 열려있다는 보도가 몇 년째 계속되고 있지만... 결론만 이야기한다면 우리나라에서 수학을 전공하고 졸업하면 핑크빛 미래가 열려있는가 하면 결코 그렇지 않다. 그러면 무엇이 미국과 다른가?


순수수학자로서 볼 때 우리나라에서 교육받은 수학자로서 외국과 경쟁력을 가지려면 우리나라 교육이 한 단계 도약하여야 한다. 순수수학은 국내에서 경쟁하는 것이 아니다. 따라서 졸업하고 환영받으려면, (물론 박사는 마쳐야 하겠지만), 외국의 좋은 대학 졸업생만큼의 실력을 갖춰야 한다. 물론 이것이 쉽지 않다. 아마도 서울대, 카.., 포.. 중에서도 친구들이 부러워할 만큼 잘 해야만 보장된 미래를 가질 것이다.


그러면 왜 우리나라에서 박사를 받으면 여기에 도달하지 않는가? 이것은 간단히 말할 수는 없다. 나도 답을 찾으려고 노력하지만 상당히 복합적이라고 밖에는 말하기 힘들다. 학교에서의 교육과정이 낙후한 것, 학생들이 어려움을 쉽게 지나가려고 핵심 강의를 듣지 않고 따라서 시험 등이 경쟁적으로 쉬워지는 것, 4-5년 안에 실패없이 졸업시켜야 한다는 강박관념에 교수들이 힘든 과정을 거치게 하지 않는 점, 한 학교의 교수 수가 작아서 여러 분야의 강의와 연구 관점을 들어보지 못하는 것, 전국 어느 곳에도 전문적 자료가 거의 없다는 것 등등이다. 여기서 소위 잘한다는 서카포 학생들도 들어가서 반은 실패 가까운 경험을 하는 미국이나 이보다도 훨씬 힘든 과정을 거치게 하는 유럽 국가들과는 전혀 다르다고 하겠다.


이것은 순수수학 분야이고 보통 사람들은 이 부분은 생각도 않을 것이고 잘 알지도 못할 것이다. 우리나라 발전에 당장 도움이 되는 응용 분야를 보자. 이것은 이렇다. 예를 들어 수학을 잘 하고 공부가 끝나면 누가 데려가는가? 미국에는 IBM, Bell, AT&T, Google, Hugh 같은 수 많은 회사들이 수많은 수학박사들을 채용한다. 시키는 일은 따로 없다. 자기가 좋아하는 것을 연구하면 된다. 그리고 계속 보고서를 낸다. 그 회사들은 왜 이런 짓을 하는가? 그들은 이런 소위 think tank를 운영하고 있으면 새로운 아이디어가 필요할 때, 새로운 문제에 봉착해서 해법이 필요할 때 그들이 그에 대한 해법을 내 주고, 그리고 가끔은 그런 친구들이 생각한 이상한 문제에서 생기는 새로운 아이디어가 떼돈을 벌게 해 주는 것을 알고 있다. (예를 들면 Lorentz가 Alamo의 연구소에서 할일 없이 쬐꼬만 컴퓨터로 쓸데없는 미방을 가지고 장난하다가 Chaos 이론을 발견한 것과 같이 말이다.)


그래서 한 회사가 한 연구소에 할일 없는 수학박사를 수백명 내지는 천명도 넘게씩 고용하고 일을 (안) 시키고 있다. 우리의 삼성은 (현대, LG 등은 물론이고) 이것을 모른다. 아니면 너무 급해서 이것을 알지만 실행할 틈이 없었다. 그리고 아직도 없다. 그러니가 이공계 출신 CEO가 90% 가깝다고 하는 (정말인가?) 미국에서는 CEO들이 이런 연구집단을 운영하는 것이 죽고 사는 것을 결정하는 하나의 축이라는 것을 보고 있지만, 여기 CEO들은 수학은 커녕 공학자만해도 정말 쬐꼬만거 하나 조금 변형시키면서 큰 돈을 받는 것을 고깝게 생각하고 있는 것은 아닌지?


자, 회사가 잘 못하고 있지만 수학을 졸업하고 모두 저런 자리를 찾는 것은 아니다. 수학을 전공하면 잘 간다는 금융공학은 정말 현대 응용수학의 꽃이다. 결코 이해하기 쉽지 않은 확률과정론을 응용해서 확률미분방정식이라는 도저히 상상이 안 되는 괴물같은 것을 다루면서 이것으로 금융의 새로운 도구로 당당히 입성한 금융공학이다. 그런데 위의 글은 이것을 요구하는 자리가 몇 안된다고 하였다. 글쎄 그럴지 난 잘 모른다. 이것은 돈을 벌겠다는 사람이라면 모두 알고 싶은 것이다. Simons가 전공자도 아니면서도 어떤 아이디어와 그 기본만 가지고도 세계 몇대 재벌이 되는 것을 보면 이런 것을 잘 하는 사람을 필요로 하는 사람들은 많을 수 밖에 없다. 뉴욕의 Wall Street에는 이런 전문가가 10,000명인가 100,000명인가 있다고 한다. 문제는 이렇게 꿈같은 일 말고도 제대로된 보수를 받고 할 수 있는 일은 많다.


지금은 우리나라에 들어와 계시는 교수님들 중의 몇은 미국에서 박사학위를 받고 나서 미국 대학에서 강의하고 연구하는 때에 동네 회사의 여러 문제를 프로젝트로 맡아서 일하고 연구하고 논문을 썼다. 예를 들어 한 분은 어떤 공장에서 나오는 배출해야 할 가스를 배출하는 관을 제대로 배치하는 문제를 푸는 프로젝트를 했다고 한다. 배출구의 위치가 있고 이런 가스가 나오는데가 여러 군데 있고 그리고 이 관들을 모아서 배출구로 연결하는데 이 관이 길어지고 돌아가서 뽑아내는데 힘이 많이 들게 되면 배출 팬의 전기를 많이 쓰게 된다. 이것을 최소화하는 관의 굵기, 배치 등을 최적화하면 많은 비용을 절약하게 된다. 아마도 이 프로젝트를 맡기는데 든 비용은 공장이 절약하는 배기 비용과 비교하여 보면 단 2-3년이면 본전을 뽑을 것이다. 이런 공장은 우리나라에도 많다. 그리고 이런 것을 알면 공장도 돈을 절약하고 수학자는 일거리가 생기는 Win-Win 상태가 될 것이 뻔하지만... 문제는 공장장은 이런 것을 찾을 생각도 안 하고 있고 (물론 모를 것이다. 혹시 알아도 실제로 절약하는지 믿기 힘들 수도 있다. 아니면 2-3년 후에 본전을 뽑을 투자를 할 생각이 없는지도...) 수학자들은 아무리 이야기하여도 프로젝트를 맡기는 사람이 없으니 그냥 포기하고 있는 것과도 비슷하다. 즉 그런 공부를 많이 하지 않는 것이다.


그러니까 응용수학을 하여도 금융공학이라면 경제, 경영 문제를 같이 공부하는 식으로 해서 현장에 바로 들어가야 한다. 비슷하게 다른 분야의 응용수학을 하겠다고 하면 수학을 전공하고 계속 수학공부를 하면서 응용하려는 분야의 공부도 하지 않으면 안 된다. 그렇지만 이런 과정을 거친 후에는 분명히 경쟁력이 월등하다. 응용하려는 분야(경제학 같이)만 공부한 사람은 절대로 할 수 없는 것을 할 수 있다. 이런 것을 공부하고 나서 우리나라 회사에서 찾지 않으면 외국으로 가면 된다. 물론 힘든 일이지만 살 길이 없는 것은 아니라고 생각된다. 이 정도 도전은 할 각오를 해야 좋은 자리를 잡을 수 있을 것이다.


결론은 현재 우리나라에서 수학을 전공하고 취직자리를 찾으면 미국에서 수학이 가장 좋은 전공이라는 말과는 상당히 다르게 느껴질 수 있다는 것이다. 그러나 우리나라가 지금 역동적 변화(좋은 변화도 있고 나쁜 변화도 있다.)의 와중에 있다는 것을 생각하면 안정화된 선진국같을 수는 없다. 즉 조금은 능동적으로 노력해야 하고 그만한 보상은 있다는 것이다. 우리 삼성도 분명히 이공학을 전공한 CEO를 늘려갈 수 밖에 없을 것이다. 그리고 이공학 전문가에게 제대로된 대우를 해 주지 않을 수 없을 것이다. (안 그런다면 망할 가능성이 두 배는 높아지겠지.) 그 동안 우리는 우리 능력을 높이는데 주력하지 않으면 안 된다. 그리고 팀을 이루고 노력해 보는 것도 해 볼만 하다.


블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

댓글을 달아 주세요

  • ㅇㅇ 2015.02.12 17:26  댓글주소  수정/삭제  댓글쓰기

    제가 다니는 대학 수학과는 대부분 목표가 선생님이나 의학대학원 혹은 피트 같은 곳을 가는 것 같은데요. 그래도 예전보다는 수학과 최업은 많이 수월해진것 같습니다. 금융회사쪽 자리도 조금씩 늘어나고 있고요 사실 미국처럼 할 수없는 것은 우리가 몰라서가 아니라 여유의 문제가 아닐까 싶습니다. 대기업의 경우 중국에게 밀리고 미국에게는 뒤쳐지니 기술개발할 여유와 시간이 없죠

    • Favicon of https://geometry.tistory.com 그로몹 2015.11.25 15:36 신고  댓글주소  수정/삭제

      그 말씀이 맞습니다. 항상 쫓기느라 여유가 없죠. 그래도 10년 전, 5년 전에는 훨씬 수월했죠. 그 때 투자했어야죠. 지금 어렵다고 하지만 지금 투자하지 않으면 5년 후에는 훨씬 더 어려워지겠죠. 항상 조금만 더 있다가 라고 생각하다 보면 절대로 못 하는 것이 기초 투자...