이 책은 포항공과대학교의 김강태 교수가 여러 해 동안 미국과 한국의 대학원에서 강의하며 다듬은 미분기하학에 대한 교재이다.
재미있는 사실은 대학원 미분기하학의 교재라고 하면 마땅한 것이 많지 않다는 것이다. 미분기하학의 주된 흐름을 따라 대학원 수준의 이론을 망라한 책은 여럿이 있다. 이 중에 몇을 예로 들면

 Helgason, Bishop and Crittenden, Kobayashi and Nomizu, Hicks

가 있고, 특히 리만기하학에 관련하여는

 Klingenberg, Cheeger and Ebin, Jost, Chavel, do Carmo

등을 들 수 있으며, 근래의 거리미분기하학 분야에 Gromov의 책을 비롯하여 몇 권이 나오고 있다. 이 가운데 대학원에서 미분기하학 강의를 시작할 때 어떤 책을 교재로 쓸까를 생각하면 위의 어느 책도 선뜻 집히지 않는다. 그 이유에는 내용이 너무 방대하고, 내용의 구성이나 기술 방법이 우리에게 너무 어색해 보이기도 하며, 너무 어려운 책이기 때문이기도 하다.

미분다양체 만의 이론이라면 아직도 Boothby나 Frank Warner의 책을 꼽을 것이다. 그러나 미분기하학의 고급 응용을 생각하는 입문에서는 다른 내용이 필요하며 이에 알맞는 미분기하학 교과서는 찾기가 쉽지 않다. 리만기하학이라면 아마 do Carmo의 "리만기하학"을 선택할 것이지만 이 것도 내용이 꼭 좋아서라기 보다는 1 - 2 학기 강의에 적합한 양과 초심자가 따라갈 수 있을 정도의 설명에 기인한다고 하겠다. 미분기하학에서는 아마도 Hicks를 선택할 것 같다. 그러나 내용이 매우 요약되어 있다는 점이 조금 불만스럽다.

이러한 점에 비추어 볼 때, 김강태 교수의 "미분기하학"(교우사)은 드물게도 이러한 필요에 부응하는 교재이다. 실제로 영어권에서도 이러한 책을 찾기는 힘들다. 내용을 살펴보자.

제 1 장 곡면 기하학 재조명

여기서는 오일러, 가우스 등에 따라 성립된 고전기하학의 이론을 역사적으로 설명하며 그 핵심 개념을 현대적 입장에서 요약하여 놓고 있다.

제 2 장 리만 공변 미분 연산자와 평행이동 개념

리만 계량, 표준좌표계와 공변미분, 접속, 평행이동, 곧은선(geodesic), 호프-리노브의 정리등

제 3 장 리만 곡률 텐서

곡률의 정의, 제 2 변분공식, 야코비 벡터장, 켤레점, 한계점, 초점 등의 개념

제 4 장 리만 다양체의 비교정리

지표 형식, 라우치, 카르탕-아다마르, 라플라스 연산자 비교정리, 부피 비교정리, 토포노고프 정리 등

부록 A 미분다양체, 벡터장 및 미분 형식
부록 B 상미분방정식에 관한 피카드 정리
부록 C 벡터다발과 접속

이 책의 특징은 고전의 역사적 기하학과 현대의 리만기하학의 관점을 통일하여 보여주려는 시도가 그 하나이며(1장), 기하학의 많은 결과들을 나열하기 보다는 중요한 개념 몇개 만을 따라서 현대 미분기하학의 요체를 보여주고 있다는 것이다. 이러한 점은 저자의 다음과 같은 서문에 잘 나타나 있다.

" ... 이 책을 읽으면 미분기하학은 어느 정도 이해하였고, 심지어는 연구자가 될만한 지식을 얻었다고 할 수 있을 것인가 하는 질문을 많이 받았습니다. 답은 그렇지 않다는 것입니다. ... (중략) ... 그러나, 이 책은 지금 우리가 구할 수 있는 다른 미분 기하학 책을 읽는 데에는 중요한 도움이 될 책이 되도록 구성하려는 목표를 가지고 썼습니다. ..."

저자는 서문에서 Klingenberg의 책을 읽기 위한 준비로서 이책을 읽는 것에 대하여 언급하고 있지만, 실제로 Cheeger and Ebin의 책을 읽기 위하여 그 책의 첫째 장을 읽어본 사람이라면 이러한 책이 있는 것에 감사하게 될 것이다. 다시 말하면 현대 미분기하학 연구의 입문을 위한 가장 훌륭한 입문서라고 생각된다.

물론 이 책은 한글로 쓰여져 있다. 이 또한 입문서로써의 훌륭한 점이다. 처음 보는 이론을 자신의 언어(mother tongue)가 아닌 언어로 읽는 어려움은 자신의 언어로 쓰여진 책을 읽어보면 확연히 드러난다.

이 책이 있음으로 해서 어려워서 미분기하학에 접근하지 못했던 많은 사람들이 도움을 받게 될 것이라고 생각한다. 물론 대학원의 미분기하학을 공부하려면 학부 미분기하학을 잘 알고 있어야 한다고 생각할 것이고 이 말이 틀리는 것은 아니다. 그러나 이러한 입문서라면 학부 미분기하학과 관계 없이 대학원 수준의 미분기하학 공부를 시작할 수도 있을 것이다. (실제로 본인은 이렇게 공부를 시작한 경우에 해당한다.)

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,
이 소개는 Hitel 수학 동호회의 수학서적/세미나/정보안내 난에 실은 것이다.



아마도 이 책은 저 밑의 12번 김대현님의 list에 들어가 있어야 함직한 책이다. 그럼에도 안들어가 있는 것은 그 list를 만든 사람이 저자 가운데 하나이기 때문이었으리라는 추측과 그 list가 이 책이 출간되기 이전에 만들어진 것이라는 이유를 떠올리게 한다. 물론 이 책은 기하학 서적이라고 할 수는 없다. 그러나 기하학을 공부하려면 생각해 보았으면 하는 것들이 이 책에는 많이 있다.

제목은 "힐베르트 문제를 중심으로 - 현대수학입문" (김명환, 김홍종 지음, 경문사)

이 책이 출판된지 이미 1년 가까이 되고 이미 잘 알려져 있을지도 모른다고 생각한다. 특히 서울대학교 교양 과목의 교재로 쓰여진 노트들을 모은 것이고 현재도 쓰이고 있으리라고 생각되기 때문이다. 아마도 고려대학교에서 내년에 부교재쯤으로 쓰일 것 같아서 한번 훑어보게 되었고 매우 중요한 책이라고 생각되어 여기 소개의 글을 써야겠다고 생각했다.

이 책은 말 그대로 현대 수학에 대한 입문서이다. 이 책을 쓰게 된 동기는 이미 앞에 설명되어 있지만 씌어진 형식은 매우 특이한 책이다. 보통 입문서들은 쉬운 내용으로부터 시작하여 어려운 이야기를 살짝 비치고 끝나는 식으로 쓴다. 이 책도 그렇게 쓰려고 노력한 점이 없지 않지만, 근본적으로 어려운 이야기를 하겠다는 선언을 하고 씌어져있다. 제목에서 말한 `힐베르트문제를 중심으로' 라는 문구가 그것을 말해준다.

여기 있는 분들 가운데 많은 사람들이 힐베르트 문제에 대해서 들어보았을 것이다. 20세기가 시작하려는 시점에서 대(大) 힐베르트가 수학자들에게 던진 문제이고 많은 문제가 수년내에 풀려버렸지만, 20세기 수학의 방향을 결정해버렸고, 현재도 영향을 주고 있는 문제들이기 때문이다. 사실 이 문제들 가운데 한 두개도 제대로 이해하려면 쉽지가 않다. 그런데 이 가운데 11개나 되는 내용을 주제로 하여 쓴 책이기 때문이다. 이러한 점에서 이 책을 쓴 사람들의 오만함과 이를 공부하는 사람들에 대한 믿음과 자신감 등을 느낄 수 있기에 오히려 작은 흥분을 느끼게 된다.

이 책은 몇가지 방향에서 바라보아야 할 것 같다.

첫째는 저자가 주장하는대로 현대수학에 대한 입문서이다. 이미 말했듯이 입문서 치고는 어렵다. 그러나 당연한지도 모른다. 현재 우리가 대학에서 공부하는 대부분의 수학(수학과 전공을 빼고)은 몇가지 예외도 있지만 대부분 기껏해야 18세기 까지의 내용을 주축으로 하고 있다. 내용 뿐이 아니라 사고의 깊이가 그러한 마당에 갑자기 20세기가 시작하는 마당의 이야기, 그것도 그 때의 연구 대상을 이야기하는 것은 쉬울 수가 없기 때문이다. 그러나 이 책을 가만히 들여다보면 이 것들에 대하여 이야기 하는 것이 그리 어려운 일만은 아닐지도 모른다는 생각을 갖게 한다. 문제의 본질을 바로 꿰뚫어, 쉬운 예로 부터 설명을 시작하는 것으로 이러한 어려움의 상당부분을 바로 해소해주기 때문이다.

둘째로 이 책은 현대 또는 근대 수학의 역사를 적은 수학사의 서적으로 보아야 할 것 같다는 생각이다. 이러한 점에서 이 책은 위의 관점에서보다 더 중요한 책으로 분류 될 것 같다. 사실 수학사에 대한 서적은 고대, 중세의 수학에 대하여는 매우 많지만 근대에 들어서서는 그리 많지 않다. 수학의 내용을 제대로 설명하기 어려운 까닭이 가장 큰 이유이겠지만, 형식적인 역사이야기가 아닌 것으로 내가 알고 있는 것은 손으로 꼽는다. 그 가운데 일본의 Takagi가 쓴 작은 이야기책이 하나요, 불란서의 Dieudonn\`e가 쓴 1700-1900까지의 방대한 수학사 책이 또 하나 있지만 둘 다 그 맥락이 다른 책이다. 이 책은 입문서를 빙자해서 현대 수학의 바탕을 가늠해보려는 수학사의 책이라고 생각된다.

20세기가 시작하는 마당에 Hilbert가 던진 문제들은 당시의 모든 수학의 범위를 망라하는 것이었다고 생각된다. 그럼에도 불구하여 이 책에서 선정한 문제들은 저자의 취향(?)에 따라 주로 기하학과 대수학의 문제로 국한되고 있다. 이에는 나름대로 여러 가지 이유가 있겠지만, 학부 수준의 입문서에 소개하는 내용으로 힐베르트의 문제들 가운데 해석학에 관련된 것들은 적절하지 못했을 것이라는 생각이 든다. 실제로 20세기에 들어서면서 현대 수학은 분야를 가리지 않고 서로의 방법론을 빌려서 쓰고, 분야간의 이론의 유사점을 찾아나아가기 시작하는 단계로 들어서게 되며, 따라서 비록 이 책이 기하학과 대수학에 바탕을 두고 있지만 현대 수학의 바탕에 기하학과 대수학 이 얼마나 큰 영향을 끼치고 있는가 하는 이야기를 하고 있다고 보이기도 한다. 즉 세째 관점은 이 책이 기하학과 대수학(그러나 대수기하학까지는 아니다)의 입문서이기도 하다는 것이다.

이 책을 쓴 이들의 노력은 대단한 것이었음에 틀림없다. 많은 내용을 정리하고 엮었으며 각각을 이러한 수준에서 이해하는 것만으로도 결코 쉬운 일이 아니었을 것이다. 이러한 노력에 감사하는 마음을 가지지 않을 수 없다.

이 책을 읽는 것은 시간을 가지고 여러번에 걸쳐서 읽어야 될 것으로 보인다. 즉, 고등학교나 대학교 1-2 학년에, 고학년이 되어서, 대학원에서, 그리고 자신의 직업과 전공을 가진 후에도 다시 읽어서 도움을 얻을 수 있는 책 같다.

마지막으로 이 책은 (저자의 다른 책들이 항상 그러하듯이) 본문의 내용 보다도 더 수학적으로 함축적이며 또 재미있는 주(footnote)를 가지고 있다. 첫째 장의 43번째 `논리'에 대한 주는 다음과 같다: ""논리"라는 말은 앞뒤가 잘 맞고 이성적인 때 사용하지만, 그 앞에 "정치"라는 형용사가 붙을 때에는 다른 뜻이 되기도 한다."
블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,

Leibniz의 Variational Principle

Juergen Jost의 강의록 Harmonic maps between Riemannian Manifolds의 첫 section에 있는 글을 옮깁니다.
----

A Short History of Variational Principles

Among the first persons to realize the importance of variational problems and the physical significance of their solutions was G. W. Leibniz (1646-1716). In his work, however, mathematical and physical reasoning was closely interwoven with philosophical and theological arguments. One of the aims of his philosopy was to solve the problem of theodizee, i.e. to reconcile the evil in the world with God's goodness and almightiness.
Leibniz' answer was that God has chosen from the innumerable possible worlds the best possible, but that a perfect world is not possible. (This infinite multitude can only be conceived by an infinite understanding, which provided a proof of the existence of God for Leibniz.)
This best possible world is distinguished by a pre-established harmony between itself, the realm of nature, on one hand and the heavenly realm of grace and freedom on the other hand. Through this the effective causes unite with the purposive causes. Thus bodies move due to their own interal laws in accordance with the thoughts and desires of the soul.
In this way, the contradiction between the predetermination of the physical world following strict laws and the constantly experienced spontaneity and freedom of the individual is removed. The best possible world must here obey specific laws since an ordered world is better than a chaotic one.
This proves therefore the necessity of the existence of natural laws.
The contents of the natural laws, however are not completely determined as is the case for geometric laws but are only determined in a moral sense, since they must satisfy the criteria of beauty and simplicity in the best of all possible worlds. This leads Leibniz even to variational principles. This is because if a physical process did not yield an extreme value, a maximum or minimum, for a particular energy or action integral, the world could be improved and would therefore not be the best possible one.
Conversely, Leibniz also uses the beauty and simplicity of natural naws as evidence for his thesis of preestablished harmony. (The notion that we live int the best possible world was frequently rejected and even ridiculed by subsequent critics, in particular Voltaire, on account of the apparent flaws of this world, but Leibniz' point that a perfectly good world is not possible was beyond reach of these arguments.)

Leibniz, however, did not elaborate his argument concerning variational principles in his publications, but only in a private letter. Thus, it happened that a principle of least (and not only stationary) action was later rediscovered by Maupertuis (1698-1759), without knowing of Leibniz' idea.
When S. Koenig (1712-1757) then claimed priority for Leibniz on account of his letter that he was not able to show however to the Prussian Academy of Sciences (whose president was Maupertuis) this led to one of the most famous priority controversies in scientific history in which even Voltaire, Euler, and Frederick the Great became involved.
It was also pointed out that Maupertuis' principle of least action should be replaced by a principle of stationary action since physical equilibria need only be stationary points but not necessarily minima of variational problems.



블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,

산학원본 개요

  • 算學原本은 양휘산법과 算學啓蒙의 계산법을 풀어 설명한 책이다.
  • 조선시대에 朴繘박율이 편찬하였으며 그의 아들 朴斗世가 간행(1700)하였다. 17세기 算書.
    • 朴繘(1621~?):본관 蔚山, 자 子明, 호 梧里. 은산 현감, 장령
    • 朴斗世 (1650~1733): 牧使, 中樞府知事. 要路院夜話記요로원야화기
    • 崔錫鼎 (1646~1715): 序文. 최명길(崔鳴吉)의 손자, 이조참판, 한성부판윤, 이조판서. 산서 九數略 저술.

최석정의 서문의 의미

최석정이 산학원본의 서문을 쓴 것은 지금 우리가 보기에는 큰 의미를 지닌다고 할 수 있다. 박두세가 최석정에게 서문을 부탁한 것은 잘 아는 높은 사람에게 서문을 부탁한 것이라고 할 수도 있겠으나 그 서문을 쓴 최석정은 서문을 쓸 만큼 수학에 대하여 해박한 사람으로 적절한 선택이었다고 할 수 있다.

최석정은 당대 이조판서를 지낸 조선 정치 및 정부의 중심인물이었다고 할 수 있겠다. 그러나 그러한 그가 산학을 공부하였으며 산서 구수략을 집필한 것은 당시의 사대부는 물론 정부의 핵심인물의 하나가 당대의 수학자와 버금가는 수학적 지식을 가지고 있었다는 사실을 보여주고 있다. 이는 단순히 수가 6예의 하나라서가 아니라 정치를 제대로 하는 데에 가장 중요한 방법가운데 하나임을 알고 있었다고 할 수 밖에 없다. (아니라면 정치에 바쁜 사람이 어찌 계속해서 산학자와 교류하고 산학을 공부하고 산학책을 저술하고 있었겠는가?)

이러한 사실은 우리에게 중요한 사실을 가르쳐 준다. 작금의 정부 관료와 정치가들 스스로는 수학이나 과학적 방법에 관심을 가지지 않고 있다. 조선 시대의 정치가 많은 잘못을 하였던 것 처럼 비판하지만 우리는 조선시대의 정치가나 관료 만큼도 과학적 방법론을 공부하고 사용하지 않고 있다고 보인다. 현재의 우리나라 정치나 국정 운영이 조선시대 보다도 못하다고 보이는 것도 이유가 있다고 생각된다.


崔錫鼎최석정의 서문


數於六蓺, 居其一, 君子屑用心焉.
6예에서 수는 그 중 하나를 차지한다. 군자가 달갑게 그에 마음을 써 왔다.

我東處僻, 業筭者, 率握齱無所識知儒學又靡暇, 余嘗病之.
우리 동방은 궁벽한데 처하여서, 산수를 업으로 하는 자는 대부분 작은 것을 붙잡아 지식이 없고, 유학자는 또 겨를이 없으니 내가 일찍이 그것을 안타깝게 여겼다.

從朴牧使斗世氏, 得其先大夫所著筭學原本一書, 而觀之儘數家之閫奧也.
목사 박두세로부터, 그 아버지가 지은 산학원본 일서를 얻어, 그것을 보니, 수가의 깊은 경지를 다한 것이었다.

盖數家以之分爲要妙. 之者, 子數也, 分者, 母數也.
대개 수가는 之分으로써 오묘함을 삼는데, 지는 자수이고 분은 모수이다.

九章列之, 分於諸篇之首,
구장은 그것을 펼쳐서 제편의 앞머리에 나누어 놓았다.

而古人以爲用筭之喉襟, 或以爲開筭之戶牖.
옛사람들은 산수의 사용에 가장 중요한 것이라고 생각했고, 혹은 산수를 시작하는 문이라고 생각했다.

其法誠有難解者至於開方一門,
그 법에서 진실로 난해한 것은 개방 일문에 이르러서 이다.

松庭朱世傑立天元號爲最深.
송정 주세걸의 입천원은 가장 깊은 것으로 불린다.

而今此書, 於九章諸篇, 發其通分會極之妙.
그런데 지금 이 책은 구장 제편에서 통분 회극의 묘함을 드러낸다.

立天元一法, 亦探朱氏之所未闡, 而指次甚詳.
입천원 일법도 주씨가 미처 드러내지 못한 바를 탐구했고, 순서(次)를 드러낸 것도 매우 자세했다.

揚子所云, “纖者入無倫.” 殆是之謂矣.
양자가 말한바 “자세한 점이 비교할 곳이 없을 정도이다.”라는 말은 거의 이것을 가리킨 것이라 하겠다.

余少時, 訪任郡守濬氏. 論及九數,
내가 젊었을 때 군수 임준씨를 방문하여, 구수에 대하여 논급했다.

其言頗精深, 今又見此書, 得以豁其蒙蔽, 庸非淺見之幸歟?
그 말이 매우 정심하였는데, 지금 또 이 책을 보니 나의 어리석음을 탁 트이게 해 주니, 어찌 천견의 다행함이 아니겠는가?

朴丈, 邃於經學, 旁通曆象, 惜其名位之未大顯也.
박장은 경학에 깊고, 역상에 널리 통하여, 그 명성이 크게 드러나지 못한 것이 안타깝다.

牧使君以才業世其家, 方宰晉陽, 謀入梓, 廣其傳. 余爲之, 精加校訂, 俾游蓺者, 有以沿求云.
목사군이 재업으로 그 집안의 대를 이어, 바야흐로 진양에서 수령을 하니, 판각하여 그것을 널리 전하기를 꾀하니, 내가 그를 위하여 교정을 자세히 하고, 유예자(수학을 즐겨 공부하는 사람)로 하여금 찾아 구함이 있게 하려 한다.

歲庚辰孟秋完山崔錫鼎汝和甫序
때는 경진년(1700년) 맹추(음7월) 완산 최석정 여화 서문을 쓰다.
블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,

텐서란 앞에서 말했던 것 처럼 이미 가지고 있는 개념을 수치적으로 표현할 때 꼭 겪는 복잡함을 이해하고 이에 대하여 말하는 방법입니다. 수학에서는 단계적으로 다음과 같이 풀어져 있습니다.
그 이야기 전에 우선 다변수 미적분학(적어도 2변수)과 선형대수(적어도 행렬과 행렬식)의 이야기를 들어보았어야 합니다.(사실 들어보는 정도로는 안됩니다.) 리만기하학을 배우려는 분이면 당연히 아시겠지요.(적어도 안다고 생각하시겠지요.)

우선 대수적인 텐서는 벡터공간 V 하나안에서의 이야기입니다. 이 때 텐서는 V 위에서의 벡터들의 곱의 일종을 말합니다. 이 곱은 보통 알고 있는 곱들을 포함하는, 더 일반화된 개념으로서 우리가 보통 곱셈이 갖고있다고 생각하는 최소한의 조건만을 가지는, 가장 일반화된 곱셈입니다. (이에 대한 정의는 대수학등의 책을 보시기 바랍니다.) 따라서 우리가 생각하는 모든 곱셈들은 이 곱셈의 하나가 됩니다. 우리가 이미 잘 쓰고 있는 예를 하나만 들죠.(잘 아는 것은 사실 이것 하나 밖에 없습니다.)

V = R^2 에 좌표 x, y를 주고 보면 V^*(dual space)는 x, y로 생성되지요. 이 때, V 위에서 정의된 다항식들은 x와 y의 곱들로 나타내어집니다. 이 들은 다음과 같이 나누어 생각할 수 있습니다.

x, y의 0차식, x, y의 1차식, x, y의 2차식, ......

이 각각은 x 와 y를 각각 0번, 1번, 2번, ... 씩 곱해서 얻어지는 것들의 일차결합을 모두 모은 것입니다.

이들이 V^*의 모든 텐서곱을 다 나타내지는 못합니다. 다항식들은 특별한 조건

xy = yx, x y^2 = yxy = y^2 x, ...

을 만족하고 있으므로 가장 일반적인 곱셈이라고 할 수는 없습니다. 다항식은 소위 대칭인 곱셈(symmetric tensor product)을 모두 만드는 것 같군요.(사실인지 한번 생각해봐야겠군요^^)

일반적인 곱셈을 @ 로 나타내기로 하면,

x @ y \not= y @ x

일 뿐만 아니라 양변이 서로 아무 관계도 없어야 합니다. 즉

x @ y = - y @ x

같은 조건도 없다는 것이지요. 이러한 일반적인 곱셈을 통해서 곱하고 일차 결합을 만들고 하는데, 단 하나, 텐서 곱셈이 되려면 다음 성질 둘(셋?)은 만족해야 하지요 (결국 대수학 책을 쓰는군^^)

(x + y) @ z = x @ z + y @ z,
x @ (y + z) = x @ y + x @ z,
x @ (ty) = t (x @ y) = (tx) @ y (t는 스칼라 체의 원소)

그러한 곱셈을 만들어 쓰는데 익숙해지면, 해석(기하)학으로 들어가게 되는데요, 앞의 글 `텐서(1)'에서 이야기한 것입니다. 즉

(1) 한 점 p에서의 방향벡터 전부를 V_p라 할 때 V_p의 텐서곱들을 p를 변화시키면서 함수로 보는 것,

(2) 이 것들이 p에 대하여 연속함수, 미분가능한 함수라는 개념들을 정의하고,

(3) 이 개념들이 서로 smooth한 관계인 두 좌표(예를 들면, 원점 밖에서 직교좌표와 극좌표)에서 볼 때 마찬가지 개념이라는 것: 직교좌표로 써서 미분가능한 텐서는 극좌표로 써도 미분가능하고, vice versa.

(4) 이러한 두 좌표계 사이에서 같은 텐서를 표현하는 방법은 항상 두 좌표계를 변환하는 변환식의 Jacobian matrix로 변환된다는 것.

등을 확인하고 스스로 항상 계산해낼 수 있게 되면 1차적으로 텐서 개념에대한 대부분의 이해가 되었다고 할 수 있죠.

이 것을 써서 리만기하학을 하게 되면, 기하학에서 어떤 텐서가 중요한 것인가 하는 문제의 답을 구하고, 이들 사이에 어떤 관계가 있으며 - 어떤 것을 미분하여 어떤 것을 얻고, 어떤 것을 적분하여 어떤 것을 얻는가, 어떤 놈을 어떤 놈과 내적하면 어떤 놈이 얻어지는가 등등... 소위 텐서들의 공식 - 이 각 텐서들의 기하학적 의미는 무엇인가 하는 문제에 답을 찾는 것이 리만기하학을 공부하는 목표라고 할 수 있습니다. 기하학에서는 대부분의 중요한 텐서적 개념을 곡률이라고 부르려는 경향이 있습니다.(물리학도 마찬가지인데, 텐서 가운데 질량, 스트레스 텐서, 운동량, 등등 모든 개념이 있습니다) 그 과정에서 Gauss-Bonnet의 정리와 같은 위상수학에 걸친 이야기를 할 수도 있지요. (즉 오일러지표라고 하는 숫자는 어떠한 텐서의 적분으로 나타낼 수 있다는 등등...)

지금 드린 이야기는 단지 뜬구름 잡는 이야기일 뿐이지만 이를 가이드 삼아서 초보 텐서론부터 차근차근 공부하시면 쉽게 이해할 수 있을 것입니다.(믿거나 말거나?) 하지만 혼자서 끙끙대기보다는 잘하는 분들께 물어보기 바랍니다. 누구나 열심히 가르쳐 주겠지만, 그리고 모든 설명이 다 정말 도움이 되지만, 진짜 잘하는 분들의 설명이 필수적입니다.

책을 한 두개 소개하면,

M. Spivak의 Calculus on Manifolds : 이 책을 통해서 텐서를 이해하면 쉬울 것입니다. 하지만 문제를 거의 다 풀어봐야만 합니다.

Sokolnikoff의 Tensor Analysis(제목도 가물가물) : 혹시 위의 현대적 표기법이 마음에 안든다면 이러한 고전적 표기법과 물리학적 이야기도 괜찮을 겁니다. 위의 책보다 훨 길어요. 고전적 물리학 책(20세기 초반의 어려운 물리학책들: 예를 들어 Eddington의 Relativity Theory(?) 같은 책) 모두 다 텐서를 열심히 설명하고 있어요.

김강태의 미분기하학 : 기하학란과 책 소개란에 소개했지만, 미분기하학(리만기하학)의 입문서로 아주 좋은 책입니다. 단지 이 책만 읽고 리만기하학 다 안다고 하면 (라마뉴잔 같이 쬐끔만 보고도 모든 것을 다 꿰뚫을 사람이 없지는 않겠지만) 아마 안되겠지요. (저자가 그러면 안된다고 했으므로)

P. Petersen, Riemannian Geometry : 최근에 나온 기하학 책인데 쉽게 어려운 이야기 까지 잘 설명한 또하나의 책입니다. 방대한 이야기를 다 한 책. 분량은 400쪽 남짓.

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,

하이텔의 글입니다.
--------------------------------

같이 풀어 봅시다 란에 텐서에 대한 이야기가 나왔다.
텐서?

텐서가 무엇이길래 (나를 포함해서) 이토록 많은 사람들에게 고통을 주는 것인가?......???

여러분이 말하는 텐서는 내가 보는 바로는 허깨비일 뿐이다.

라고 한다면 무슨 헛소리인가 하겠지만, 글쎄, 그럴듯 하다고 할수도 있겠다. 텐서를 한마디에 또는 한번 이야기에 설명하는 것은 불가능하다. 무엇보다도 그 많은 복잡한 공식과 계산들은 당연히 책을 보고 배워서 외워야 할것이다. 문제는 텐서를 보면서 무슨 생각을 하여야 하는가이다. 이를 잘 이해하려면 정말 쉬운 경우를 예로 들지 않으면 안된다.
그러나 설명을 해 보기 전에, 여러분은 물론 선형대수를 공부했기에 텐서를 알려고 하고 있을 것이다. 그러나 여러분은 선형대수가 '뭐하는' 것인지를 알고 있는가? 글쎄요라는 대답이 나온다면 텐서를 이해할수 없는 것은 당연하다.

세상에서 가장 쉬운 예:

한 직선의 점들에다 또 다른 한 직선의 점들을 대응시키는 함수를 생각하자. 이것은 여러분이 국민학교에서 부터 지금까지 수학에서 거의 매일 다루고 있는 대상이며 사실 이것 밖에는 배운것이 없을 것이다. 이것을 보면 여러분은 우선 y = f(x) 하고 쓸것이다. 이것은 틀린것이 아니다. 그러나 여러분은 분명히 x 나 y 가 수(number 즉 실수)라고 생각할 것이다. 여기는 문제가 있다. 직선 위의 점들은 수가 아니다. 여러분이 수라고 생각한다면 그것은 직선위의 점들을 항상 수와 대응시켜서(수를 이름으로 써서) 불렀기 때문일 것이다.

직선위의 점들은 항상 정해진 이름(= 대응되는 수)이 있는가? 이런 생각을 해보면 금방 알수가 있다. 직선에 우리가 단위길이를 주고 눈금을 끊어나가기 전에는 '아니올시다' 이다. 이것도 직선 위에서 길이를 잴수 있을때라야 된다. 따라서 x, y 에 숫자를 넣어 생각하는 것은 우리 직선들에 수를 찍어서 소위 '수직선'을 만든 후의 이야기이다. 수직선을 만드는 방법은 여러가지가 있으니까 한가지 함수 y = f(x) 라도 수직선을 다르게 만들면 f(x) 의 공식은 달라지게 마련이다. 진짜 예를 들자.

y = x 라는 함수가 있었다. (이미 수직선이다) 그런데 어떤 사람이 x-축에서 단위길이를 원래길이의 두배로 잡았다. 즉 이전의 2 자리가 이제는 1 이 되고 말았다. 그랬더니 함수는 y = 2x 가 된다. 함수가 변했는가? (이 물음은 두 직선 사이의 대응 관계가 변했느냐는 뜻이다.) 물론 변하지 않았고 단지 x-축 위의 점들의 이름만이 바뀌었을 뿐이다.

이렇게 함수의 영역에 숫자로 이름을 주는 것을 '좌표'를 준다고 하고 '좌표계'가 주어졌다고 한다. 한 함수라도 x 나 y 의 좌표계가 바뀌면 숫자로 나타내는 식은 달라진다.

이 긴 이야기의 핵심은?

1. 우리는 숫자를 써서 나타내는 것만을 계산할수 있다는 것이다. 그러나 이것은 이름을 어떻게 주느냐에 따라 변한다.

2. 그러나 이렇게 숫자를 써서 말하고자 하는 것은 좌표를 바꿔도 변하지 않는 함수에 대한 이야기이다.

비극이 아닐수 없다. 그러나 딴 방법은 없다.

일차함수만 생각하자. (이것이 '선형대수'이다)
좌표를 정하고 f 라는 함수를 표시하니 f(x) = x 였다. 이 함수는 기울기 1 만 알면 되는 함수이다. 그런데 아까 처럼 좌표를 바꾸니까 기울기가 2 가 되고 말았다. 그럼 기울기가 무슨 소용인가? 좌표만 바꾸면 무슨 기울기도 다 나올텐데...(0 만 빼고)

따라서 우리가 말하고 싶은 '변화율'은 이렇게 이야기 한다. 이런 좌표에서는 기울기가 1 이다. 하지만 x-좌표를 (0 이 아닌) a 배로 늘리면 기울기는 a 배가 되고 y-좌표를 그렇게 하면 기울기는 1/a배가 된다.
여기서 몇배 하는 부분의 설명은 언제나 그렇다는 것을 알수 있을 것이다. "따라서 한번 이야기 하면 다시 할 필요가 없겠으므로 다 안다면 다시 이야기 하지 않는다"는 것이 선형대수의 밑(basis)의 변환에 대한 정리이다.

즉 선형변환(Linear Transformation = 변수도 벡더이고 값도 벡터인 일차함수) 은 좌표를 이러이러하게 잡을때 (즉 basis 를 이렇게 잡을 때)

Y = [A] X

로 표시 된다면 좌표(basis)를 이러이러하게(= [P], [Q]를 써서) 바꾸면 새 좌표에서는

Y = [Q][A][P 의 역행렬] X

꼴로 표시된다는 정리이다.(여기서 X, Y 는 벡터, [A]등은 행렬이다.)

[[중요!!!]]

따라서 행렬을 하나 보면 그 행렬을 곱해서 함수(선형변환)가 나온다는 생각 뿐이 아니라 이때 basis 를 바꾸면 그 행렬이 어떻게 변할지도 항상 생각하고 있어야(최소한 생각해 낼수 있어야) 한다. 그래야 그 함수를 진짜로 (어떤 경우에도 쓸수 있게) 알고 있는 것이다.

[[[끝말]]]

자 이제부터 간단히 '텐서는 뭔가?' 이야기 하자.

수학이나 물리학에서 나오는 많은 양(quantity)들은 위의 함수와 같은 존재이다 X(i) 들이 벡터일때 (f 는 일차인 경우만 생각하자, 아니면 '한 점에서' 미분을 해서 일차도함수인 전미분(differential = Jacobian)을 생각한다)

Y = f( X(1), ... , X(n) )

꼴이다. 이걸 좌표를 써서 나타내면 행렬 같지만 독립변수가 n 개의 벡터이므로 첨수(index)가 n+1 개나 필요하다. (선형대수에서는 독립변수가 한개, 첨수가 2개이다) 즉

               [A] = A
                      i,j,k,...
모양이 된다.

좌표도 일차식으로만 바뀌란 법이 없다. 그러나 한 점에서 벡터만을 다루므로 좌표 변환의 그점에서의 Jacobi 행렬만 쓰면 된다. 그러면 다음과 같다. f 가 좌표(x, y) 에 따라 [A], [B]등으로 나타날때,

                                                    
               dy   dy
                 p    q
       A    =  ---  ---  B
        i,j    dx   dx    p,q
                 i    j

꼴의 관계가 성립한다. (dy/dx 꼴은 좌표변환의 Jacobi 행렬) 첨자가 두개인 경우만 썼지만 여러개일때도 마찬가지다.

특히 물리학의 양들을 나타낼때 자연에서 주어지는 좌표란 것이 없으므로 인위적인 좌표(km, sec, gram,...)에 대해서 계산한다. 그러면 위의 f 는 [A]같이 나타나겠지만 그 숫자가 그리 중요하지 않다. (위에서 기울기가 별로 중요하지 않듯이...) 문제는 그 숫자가 여러가지 좌표계에서 어떻게 바뀌어 나타나는가 이다. 그리고 그 바뀌는 숫자들이 어떤 특성의 양(quantity)을 나타내는가 이다.

CARTAN

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,


Q: 저의 궁금증은 수학에서의 확률과는 거리가 있다고 생각합니다.

주사위를 던질때 나올수 있는경우 그 많은 결과를 어떻게 구하는가, 수학에서는 이상적인 주사위를 생각하여 주사위를 던질때 나올수 있는 결과는 단 6가지 로 만든다.
현실에서는 아주 많다.
그리고, 왜 주사위가 모서리쪽으로 꼿힐 경우는 왜 드문가 왜.
주사위를 던질때 왜 각각의 눈이 나올비율은 왜1/6에 가까이 가는가.

로 정리할수 있을 것 같습니다.

한번더 정리하면..

확률의 2가지 정의는 이러하다.

첫째, 특정 사건후 결과 특정 결과가 일어날거라고 기대할정도는 특정사건후 일어날수 있는 모든 경우의 수를 분모에 특정 결과가 일어날수 있는 방법은 분자에 써 구한다.

둘, 어떤 행위를 반복하면 동전을 던진다는지... 아주 많이 반복하면 일정한 규칙이 나타난다. 동전을 아주 많이 던지면 앞면과 뒷면이 나오는경우가 거의 같아진다.즉 아주 많이 반복했을떄 특정결과는 특정 비율에 가까워진다 주사위를 아주 많이 던졌을 때 1의 눈이 나온다라는 결과의 비율은 1/6에 가까워진다.

첫째 정의에서의 의문은 분모에 쓸 모든경우를 어떻게 구하는가(수학이 아닌세계에서 이상적인 주사위는없으니.. 분명 아주아주 많은 결과를 생각할수 있을 것이다.)

또 왜 특정 결과는 덜 나온다고 하는가. 예를들어 동전을 던졌을 때, 스는경우는 드무니 생략한다고 하는데 그게 왜 드문가. 수학의 세계에서는 이상적인 동전을 2차원 원으로 생각하여 의문을 빠져나가지만 수학이 아닌경우 어떻게 하는가.

A: 이 문제는 초등학교 수준의 질문은 아닌 것 같군요.

우선 확률의 문제는 조금 정리하고 생각하여야 할것입니다. 수학의 확률은 확률의 이론입니다. 이 경우는 확률이 무엇인지는 이미 알고 있는 상황에서 여러 확률 사이의 관계를 연구하고 이용하는 것이 수학의 확률이라는 것입니다. 따라서 여기서 물어보는 것과 같이 어떤 특정한 경우의 실제 확률이 왜 이러한 값인가 하는 것은 수학에서 할 질문이 아닙니다.

동전의 경우에 앞 뒷면이 나올 확률이 같다는 것은 아무도 알 수 없습니다. 수학에서는 이상적인 동전이라고 하여서 앞 뒷면이 나올 확률이 같은 동전이라면 하고 가정하고서 문제를 시작합니다. 이 때 또 동전이 설 확률은 영이라고 설정하고 합니다. 실제로 왜 그런가는 어떤 분의 말씀대로 물리학의 이론이 될 것입니다.

그러나 이것도 물리학의 이론일 뿐이고 실제 현상이 왜 또는 정말로 물리학의 이론과 맞는가 라고 물어보면 대답할 수가 없습니다. 따라서 실제로 해 보아서 확률을 찾아야 합니다. 그 방법은 통계를 쓰는 것인데... 실제로 동전을 많이 던져봅니다. 그러면 동전의 앞면과 뒷면이 나오는 경우는 반 반으로 되어 갑니다.
이제 이 동전을 던질 때 마다 앞면과 뒷면이 나올 확률은 (같을지는 몰라도) 일정하다고 가정합니다.(물론 이 가정도 실제로 맞는지 알 수는 없습니다.) 그리고 이러한 반복시행에서 앞의 결과가 뒤의 결과에 영향을 미치지 않는다고 가정합니다.(이것도 틀릴 수 있습니다) 그러면 이러한 반복시행을 할 때 그 횟수에 따른 확률이 1/2에 수렴하려면 원래도 그랬어야 한다는 것은 수학으로 알 수 있을겁니다.

이제 이러한 반복시행을 10000번 해서 앞 뒷면의 경우가 반반이라는 결론을 얻었다고 해도 이 사실만으로 계속해서 시행할 때 더욱 더 반반에 수렴하리라는 보장은 없습니다. 따라서 통계적으로 어느 정도의 유의수준 아래서 10000번의 시행 결과를 보고 그러한 결론을 얻을 수 밖에는 없습니다.

Q: 또 주사위를 던져 1의 눈이 나온다 1의 눈이 나오지 않는다로 생각하여 각각의 확률을 1/2로 생각할때의 문제점이 정확히 무엇인지 알고싶다.이에 대한 답변에 각각의 경우 가능성이 다르기 때문이다 라는 말을 들은적이 있는데 이렇게 단순히는 이해가 안간다.


A: 1이 나온다와 나오지 않는다 두 경우로 나눌 때는 이 두 경우의 확률이 서로 같다는 것은 어떻게 알 수 있습니까? 물론 주사위에서 1 - 6 까지의 눈이 모두 같은 정도의 확률로 나오는 것은 어떻게 알 수 있느냐 와 같은 질문입니다. 이 두 질문에 대해서 실제 주사위의 경우의 답은 알 수 없다 입니다. 실제로 위와 같이 실험을 하고 통계를 내 보아야만 근사치의 답을 얻을 수 있을 뿐입니다.

그러나 수학 문제에서는 공정한 주사위라고 가정하고 이야기 합니다.(아무 말도 없으면 공정한 주사위라는 뜻입니다) 이 경우는 1의 눈이 나올 확률은 1/6입니다.

(한편 실제 주사위의 경우에는 1이 나올 확률이 거의 1/2 이 되도록 만들 수도 있을겁니다.)

계속되는 질문과 답글도 함께 싣습니다.

우선 답변해주신점 감사드립니다. 사실 저도 그렇게 결론을 내리려 했는데 저혼자서 그랬다간 큰일날일 아닙니까 읽던 책도 덮어두고 답변만 기다렸는데 다행입니다.


Q: 저는 수학에서 실용성이란것에 대한 논의를 별로 좋아하지 않고 꼭 실용할수있지 않아도 상관없다고 생각하는 사람이지만 이 확률 이라는게 원래 실생활에서 유래한 걸로 알고있고있는데. 그렇게 이것저것 받아드리기를 요청하는 가정들로 채워있는 수학의확률이론을 받아드려야 할지 고민이군요. 실용은 상관없다해도 확률을 공부하며 무슨 지적 만족이라도 줄수있는지 의문이네요.

A: 수학의 이론이 아무리 추상적이라 하더라도 실용적이지 못하면 아무 소용이 없습니다. 물론 어떤 수학 이론은 아무도 실용적으로 사용하는 일이 없는 것 처럼 보이지만 그것도 나름대로 숨어있는 실용성이 있게 마련이지요.

우선 확률뿐이 아니라 어느 수학이론도 가정으로 채워져 있기는 마찬가지이지요. 보통 미적분학은 실수에 대한 많은 가정 위에 서 있고요. 미분방정식도 대수학도 모두 다 그렇습니다. (예를 들어 1+1=2를 실생활에서 사과를 하나씩 두번 먹으면 두개 먹는것이다 라고 활용한다고 할 때, 이 수식은 수학의 이론이고 현실의 사과 문제는 이 이론을 적용한 것이지요. 이 때 주어진 두 사과가 똑같지 않고 한 쪽이 좀 무거우면 두 사과를 다 1이라고 해도 되는 것인가 라고 하는 문제가 생깁니다.)

이 문제에 대한 수학의 견해는 1+1=2라는 식은 추상적인 개념으로서 수의 연산에 대한 성질이라고 이해하는 것이고 현실의 사과는 이러한 연산법칙을 적용할 수 있는 대상이라고 받아들일 수 있을 때 이 연산을 적용하는 대상일 뿐입니다. 이를 적용하여도 좋다고 생각되면 적용하는 것이고 적용하여 문제가 있다면 적용하지 않을 뿐이지 이 이론이 주어진 현실에 적용되지 않는다고 이론을 받아들일지 말지 할 것은 없습니다.

이는 마치 삼각형의 이론이 원에 적용되지 않는다고 삼각형의 이론을 받아들이지 않는다는 것과 비슷합니다.


Q: 확률이라는 가능성을 수치로 나타낸것이 수학의 세계에서 본질?을 잃지 않을지 고민입니다. 확률에 담긴 심오한 뜻 그게 수학의 확률이론에서는 전혀 반영되지 않는다고 봅니다. 죄다 가정에다가 더군다가 가정이 확률의 주춧돌의 하는 역할을 하는데.


A: 수학 이론에 반영되지 않는 심오한 뜻이 무엇인지 궁금하군요.


Q: 수학의 세계에서 이상적인 주사위를 던진떄 각각의 눈이 나올 확률은 1/6 이다. 양자역학에서 확률은 아주 유용하게 쓰이고 있는데 현실의 여러가지 물체에 영향을 주어서 특정 결과의 기대값을 구하는 작업을 그 물체와 생김새가 비슷한 수학적 대상으로 생각해서 수학의 세계에서의 확률을 현실세계에 그대로 쓰는경우.

그러니까 주사위를 위로 던지는 일을 하면 주사위는 반드시 아래로 떨어지고 1~6중 하나의 눈이 나올텐데 그걸 어떻게 구하냐면

주사위와 비슷한? 정육면체로 생각해 수학의 세계에서 정육면체를 던져서 여러가지 붙여놨으니 쉽게 확률을 구할테고 그 값을 실제 주사위를 던진 값으로 생각할것 같은데요


A: 확률이론이 이야기하는 것은 주사위를 던질 때 한 눈이 나올 확률이 1/6이라면 두 개를 던질 때 합이 5가 될 확률은 얼마얼마이고 또 연거퍼 던질 때 두 눈이 같은 확률은 얼마이고 등등이 성립할 수 밖에 없다는 인과율 뿐이지요.

현실이 이러한 문제에서 가정하는 여러 사실들과 어긋난다고 이 이론이 틀린 것은 아니고, 이 이론은 이러한 가정들이 성립할 때만 적용하면 되니까 문제 될 것도 없지요. (여기서 가정하는 것들은 주사위의 눈이 나올 확률은 시간이 지나도 변하지 않는다. 연거퍼 던질 때 앞의 결과와 뒤의 결과에 인과관계가 없다 는 등등입니다. 이것이 가정되지 않으면 어떠한 이론도 이야기할 수 없겠지요?)

이제 주사위를 던질 때 1-5까지의 눈이 나올 확률이 1/5이고 6은 절대로 나오지 않는다면(즉 그런 주사위가 있다면) 확률은 이 경우에 대하여도 두개의 주사위를 던질 때 두 눈의 합이 5일 확률을 계산할 수 있게 해 주고... 등등 모두 가능하게 해 줍니다.

위에 말씀하신 문제는 확률이론과는 별개의 문제로 에너지님이 생각하시는 주사위가 왜 앞의 주사위와 같은가 하는 것인데 이것은 확률이론이 어떻게 할 수 있는 것이 아니겠지요. 주사위 만드는 사람의 문제겠지요.


Q: 이렇게 못 믿음직한 확률이라면 물리학의 여러이론에 써먹는건 아주 위험한것 같은데. 물리학자들은 확률부터 제대로 정립해야 하는건 아닐까요

A: 따라서 확률 이론은 믿음직한데 이를 적용하는 사람들이 제대로 적용해야 하는 문제가 되지요. 확률이론은 이미 매우 정교하게 정립되어 있습니다.



Q: 주사위를 던지는걸 왜 정육면체를 던지는 걸로 생각해야합니까 정육면체를 던져야 그나마 비슷하게 통계수치가 나온다는 법이라도 있습니까

A: 주사위를 정육면체로 생각해야 한다는 법은 없습니다. 오히려 주사위를 만드는 사람들이 정육면체로 만들어야 모든 면이 나올 확률이 같으리라고 생각하고(확률이론을 이용하여) 만든 것일 뿐이지요. 정육면체면 나오는 면이 모두 같은 확률을 가질까요? 그렇지 않습니다. 한쪽을 무겁게 하면 그 반대쪽 면이 나올 확률이 높아지겠지요. 속에 자성을 띄게 하면 주변 자장의 영향을 받을 것입니다. 모서리를 너무 뾰족하게 하면 혹시 모서리가 바닥에 박혀서 모서리로 서게 될 지도 모르지요. 이런 모든 주사위를 가지고 게임을 할 때 나올 여러가지 확률을 알고 싶다면 ...?

확률이론은 이럴 때 각 면이 나올 확률만 알면 나머지 모든 것을 계산할 수 있다는 것을 말하고 있을 뿐이지 각 면이 나올 확률이 얼마인지는 이야기하지 않습니다.



Q: 그러니까 어떤 현실세계의 물체를 던져서 특정결과를 기대하는 값을 구할 때, 그 물체와 비슷하게 생긴 이상적인 수학적 도형을 생각해( 동전은 원 주사위는 정육면체) 그 것을 던지는 것으로 생각하는게 왜그런가 입니다 또 그게 정당한가도 의문이구요


A: 이상적인 수학적 도형을 던지는 것은 단지 말을 편하게 하기 위한 것일 뿐이고요 이상적인 수학적 도형을 던진다고 확률을 알 수 있는 것은 아닙니다. 정육면체를 던지면 각 면이 나올 확률이 1/6입니까? 알 수 없습니다. 위에서와 같이 무게분포가 어떤 정육면체인가 주변상황이 어떤가도 문제이고 모든 상황이 똑같아도 그럴 확률이 1/6인지 알 방법은 없지요.

수학문제에서 하는 이야기는 "만일 던지는 주사위(또는 정육면체)가 각면이 나올 확률이 모두 같다면" 이라고 가정할 때 다른 확률들을 구하라는 것이랍니다.


Q: 그리고 그 수학적 도형이 실제로 비슷합니까 주사위는 정육면체와 왜 비슷하며 정육면체가 가장 생김새가 가까운지도 의문이 됩니다. 게다가 모양이 아주아주아주아주 약간이 다른걸 던질떄 왜 확률이 아주아주아주 비슷할지도 의문이죠.


A: 물론 의문입니다. 이것은 물리학의 근본적인 문제이지요. 그런데 만일 그렇지 않다면 즉 상황이 아주 조금만 변해도 결과가 많이 달라진다면 우리가 믿고 이야기할 것이 하나도 없어진답니다. 즉 에너지님의 몸에 산소분자가 하나 더 붙으면 다른 사람으로 변한다면 매우 불안정하겠지요. 이사람이 됐다가 저사람이 됐다가... 따라서 어떤 이론을 적용할 수 있으려면 그 대상이 안정하다는 것을 알아야 합니다.(물론 이것도 가정으로 밖에는 이야기할 수 없지요.) 수학에서는 이러한 안정성을 연속성이라고 부릅니다. 즉 상황이 조금만 변하면 그 결과도 조금씩만 따라 변한다는 것이지요. 이러한 것이 깨지는 상황을 파국 또는 혼돈이라고 부르고요... 위에서 말씀하신 것에 대하여는, 물리에서는 확률이 그 대상의 함수로 보아 연속적이라고 가정하고 있습니다. 확률뿐 아니라 모든 좋은 대상들은 연속적으로 변화한다고 가정합니다.


Q: 그러니까 주사위던지는 거랑 그 주사위에다가 금원자 하나 붙여놓고 던지는 거랑 왜 별차이 없냐 이말이죠.그걸 또 물리적으로 바랑의 영향을 별로 막지 못하니 하신다해도

아직은 말할수 없지만 그래도 답답한 무언가가 있습니다.


계속 언급했지만

현실의 주사위가 이상적 주사위를 닮으면 닮을수록 이상적 주사위처럼 던졌을때 각각의 눈이 나올확률이 같아진다

설마 이것까지 가정한다면 할말이 없습니다.왜그렇죠.


A: 이것은 수학은 가정하지 않습니다. 그러나 물리는 가정할 것 같군요. 그 이유는 그것이 물리학이기 때문입니다. 물리학은 현실에서 수학적 모형을 뽑아 수학적 모형의 이론으로 현실을 설명하는 학문이기 때문입니다. 반면에 수학은 현실의 문제에 (이러한 의미에서) 어떻게 적용하는가는 관심이 별로 없습니다. 오히려 현실에 적용할 방법이 있어보일 때 사용할 수 있는 이론을 개발하는 것이 목표이지요. 즉 현실에 적용하는 방법을 찾는 것은 물리학이고, 적용할 이론을 찾는 것이 수학이지요.



글을 쓰면서 생각나는대로 써서 쓰고 나서 글을 제대로 읽을 수 있을지 걱정입니다 이해해 주시구요. 건방진 말투 너그러이 용서해주세요... 마지막으로 확률서적 추천해주시면 더 바랄게 없습니다.
블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,

Hitel에 썼던 글입니다.
-----------------------------

함수라는 개념은 간단히 영역의 원소들에게 치역의 원소들을 대응시켜 주는 관계(규칙)이다. 이 관계는 어떤 때는 한마디 말로도 표현될수 있으며, 또 다른때는 일일이 대응관계를 나타내 주기 전에는 다른 방법을 찾기 어려울 때도 있다. 일반적으로 이 관계를 다음으로 나타낸다.

y = f(x)

이때 f(x) 는 3x+2 처럼 한마디로 써지기도 하지만 어떤때는 위에 이야기 한것처럼 몇마디로는 쓸수 없다.

그런데, 이런 함수관계는 어떤때는 수식(방정식)이라는 조건으로 정의되기도 한다. 즉

3x + 2y = 5 ------------ (1)

같은 식은 독립변수 x, y 로 이루어진 3x + 2y = f(x,y) 라는 이변수함수가 있을 때 특별히 이 함수값이 5 가 된다면 x 와 y 사이에 어떤 관계가 있나에 대한 대답으로써 함수

y = (1/2)(5 - 3x) ----------- (2)

를 정의한 것이 된다. 자 이때 정의된 함수는 마찬가지지만 (2) 처럼 (explicit 하게) 쓰면 양함수(explicit function)이라고 하고, (1) 처럼 함수를 정의하는줄은 알지만 explicit 하게 표현하는 수고를 하지 않으면 음함수(implicit function) 이라고 한다.

자 그럼 똑같은 함수인데 왜 굳이 음양을 나누는가? 여기서 식으로 주어진 관계

x^2 + y^2 - 4 = 0 ------------ (3)

을 보자. 이 때는 이미 잘 알다시피 함수가 단 하나 정의되지 않는다. (이유는 매 x 에 대해 위 관계를 만족하는 y가 어떤 때는 두개, 어떤 때는 하나가 있고, 어떤 때는 하나도 없기 때문이다. 하나도 없는 x 는 함수의 정의역에서 빼버리면 되지만 두개 이상 있으면 어느것을 선택하느냐 하는 문제에서 여러가지 함수가 나오기 때문이다.)
이 때, 어떤 함수가 (3) 에서 정의된 음함수라고 말하는 것은 이렇게 매 x 마다 (3) 을 만족하는 y 를 하나씩 뽑아서 만든 함수들 가운데 하나임을 말한다.
(참고로 그런 함수는 매우 많다. [-2, 2] 를 정의역으로 할 때,이 집합을 두부분으로 나누어 한부분에서는 매 x 마다 관계 (3) 을 만족하는 y 가운데서 양수를 잡고 다른 부분에서는 이런 y 가운데서 음수를 잡으면 여러가지라는 것을 알수 있다. 이중에서 연속함수가 되는것은 보통 문제풀때 쓰는 두가지 뿐이다.)

이것이 더 유용한 경우는

cos (xy) + log (x+y) = 5 ----------- (4)

와 같이 (나 같은 사람은) y 를 x 에 대하여 풀어낼수 없는 경우에는 위에서 같이 정의된 함수는 그냥 (4) 에 의하여 음함수로 정의된 함수라고 부르는수 밖에 더 있겠는가? (그러니 음함수나 양함수라고 부르는 것은 다른 종류인 두가지 함수가 아니요, 똑같은 함수되 나타내는 방법이 다름을 보이는 말이다.)

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,
 수학사랑의 질문과 답변

아래 김종욱님이 설명하신 글에 조금만 덛붙입니다. 산술평균을 조금 들여다보면 이런 생각을 한 것 같다고 할 것입니다: 즉, 두 수 x, y를 더해서 x+y 를 구했는데 이것이 두 수 x, y를 사용한 것이 아니라 어떤 한 수 z를 두 번 사용한 것이라면 (다시 말하면 z+z 였다면) 이 z는 어떤 수일까 하는 질문의 답이 산술평균입니다. (이와는 전혀 다른 방법으로 설명하는 수도 있을지 모릅니다.)

1. 이제 덛셈이 아니라 곱셈에 대하여 같은 방법으로 생각하여 보면 기하평균이 나온다는 것을 알겁니다. 혹시 세 수에 대한 덛셈은 x+y+z=u+u+u인 u를 생각하면 세 수의 평균이 나오지요... 세 수에 대한 곱셈을 생각하면 xyz=u^3 에서 u=(xyz)^(1/3) 입니다.

2. 이제 기하평균을 다른 각도에서 봅시다. (ln = log 입니다)
양수 x, y가 주어지면 여기서 ln x, ln y를 계산해서 이것의 산술평균을 구한다고 보고 위와 같이 생각해보면 (ln x + ln y)/2 가 됩니다. 이것이 ln을 취하기 전의 어떤 수 z의 ln 값인가를 물어보면, 즉,

(ln x + ln y)/2 = ln z

를 풀어 z를 구해보면 x, y의 기하평균이 나옵니다.

그러면 x, y의 ln값 대신에 역수 1/x, 1/y를 취하여 보고 이와 같이 생각해 보면

(1/x + 1/y)/2 = 1/z

인 z를 구한 것이 조화평균이 되지요.

마지막으로 이러한 생각은 주어진 수를 변형하고 평균을 구한다음에 이 수를 역으로 변형한 것이라고 생각하면 됩니다. 변형하는 방법은 많으니까 (역 방향으로 변형할 수만 있으면 되니까... 즉, 변형이 1대1 대응이면 되니까) 여러 가지 평균을 생각해 볼 수 있을겁니다.

적분을 사용한 평균

( int_a^b f(x) dx )/ (b-a)

도 이러한 관점에서 이해할 수 있을지 생각해 보세요.

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,
수학사랑의 라디안 논쟁이라는 글에 대한 답입니다.
------------------------------

 수학사랑에 질문에 대한 답변

선생님의 의견을 잘 읽어 보았습니다. 약간 혼란스러운 점이 있지만 대체적으로 선생님의 의견에 공감하는 바입니다. 단지 아래 오뎅/조개님의 말씀과 같이 어려운 부분이 있는 점에 또한 동의하며 몇 가지 말씀을 덧붙입니다.

우선 오뎅님의 말씀과 중복되지만 다시 한번 짚고 싶은 것은 현행 교육과정의 교과서 분량은 이러한 역사적 사실을 동기로 삼는 설명을 하기에는 턱없이 부족합니다. 7차 교육과정에서 교과서 분량의 상한선을 많이 높였지만(아마 약 1배 반 정도가 아니었나요?) 이정도로는 이러한 설명을 넣을 수가 없습니다. 물론 라디안의 설명만을 넣는다면 몇 쪽 더 쓰면 되겠지만 그러면 다른 모든 부분과의 형평이 깨어지고, 모든 단원의 개념을 이런식으로 설명한다면 간단히 현 교과서 분량의 10배가 되어도 모자랄 것입니다. 어쩌면 수학사교과서 같이 되어버리고 말지도 모르지요.

우선 라디안은 실수고 60분법의 도는 실수가 아니라는 말은 엄밀히는 틀리는 것이 확실하지요. 그러나 각의 크기를 따질 때는 '도'나 '라디안' 모두 하나의 단위가 됩니다. 물론 모두 다 실수를 쓰고 있고요. 이는 길이를 재는데 m, cm, ft 등의 여러 가지 단위가 쓰이는 것과 유사합니다.

이제 조금 조심하여 구별할 것은 '삼각비'와 '삼각함수' 입니다. 이 두 개는 동기 유발의 관점에서 연계하여 설명하는 것이 일반적입니다. 그러나 이 두 개는 전혀 관계가 없는 것이라고 할 수도 있습니다. 삼각비는 구체적인 도형과 각의 크기 등에 관련된 개념이고요. 삼각함수는 이로부터 한 단계 추상화되어 나타난 함수니까요. 이제 삼각비에서는 단위로 '도'를 쓰거나 '라디안'을 쓰거나 큰 문제가 되지는 않습니다. 그러나 삼각함수를 쓸 때는 변수를 라디안으로 할 때의 삼각비의 값을 함수값으로 정의하는 것이 다른 어떤 경우에 비하여 매우 간단합니다. 따라서 삼각함수는 라디안을 변수로 할 때의 삼각비의 값을 씁니다. 이제 예를 들면 함수 sin 은 실수집합 R 에서 R 로 정의된 함수이니까 (그리고 일반적으로 함수의 정의역, 치역의 수는 단위를 생각하지 않으니까) sin 함수의 변수(예전 각의 부분)는 단순한 실수일 수 밖에 없고, 또, 라디안을 쓸 때의 각의 삼각비와 같다고 할 수 있는 것입니다.

이러한 부분을 이해하신다면 왜 라디안을 소개하는지, 왜 라디안이 실수라고 하는 말이 정확히는 틀린 말이면서도, 라디안 부분을 실수로 바꿔서 삼각함수를 만드는 것이 옳은 것인지를 이해하실 수 있을 것입니다.

만일 우리가 수학의 내용만을 고집한다면 초등학교에서부터 라디안으로 시작하는 것이 옳습니다. 그러나 그렇게 하면 상당히 많은 부분이 너무 어려워질 것입니다. 반면에 '도'를 고집한다면 삼각함수를 다루는 것이 매우 복잡해질 것입니다. 따라서 처음에는 '도'를 사용하다가 어딘가에서 '라디안'을 도입해야 하는 것은 분명하며 이는 '오뎅'님의 견해가 맞습니다. 단지 점차로 현실문제의 주기적인 현상에 삼각함수의 응용이 늘어나는 지금이고 보면, 대다수의 사람들이 미적분의 방법을 모르는 것이 현실이더라도 21세기 초반의 우리 국민은 아마도 삼각함수를 구구단같이 사용할 수 있어야 될 것입니다. 이러한 점에서는 라디안의 도입은 될 수 있으면 앞당길 필요가 있다고도 생각합니다.(이는 무조건 교육과정을 높이자는 것은 아닙니다.)

오히려 현재의 교육과정에서 이러한 효과를 거둘 수 있는 것은 현장의 선생님들이 이러한 목표를 이해하고 이미 잘(?) 만들어져 있는 교육과정을 활용하는 것이라고 생각합니다.

예를 들면 중학교에서 원을 공부하면서 중심각은 '도'를 사용하지만 이로부터 부채꼴의 원호의 길이와 연계시키는 문제를 많이 다룹니다. 이것이 왜 많이 다루어지는가? 어쩌면 많은 사람들이 이 부분에서 문제로 내고 계산할 수 있는 것이 이것뿐이라서가 아닌가 하고 생각할 지도 모릅니다. 그러나 사실은 이것이 바로 다음 단계에 가서 라디안을 도입하기 위한 준비작업인 것입니다. 즉 중심각과 호의 길이를 자꾸 연계시켜 보면서 그 비례관계를 익히고 이것이 자연스럽게 된 다음에는 라디안으로의 전환이 한결 쉬울 것이기 때문입니다. 따라서 여기서 비례관계를 강조하고 반지름을 고정한(예를 들면 1로) 원의 원호의 길이를 알면 중심각을 알아낼 수 있다는 사실을 강조하면, 또, 나아가서 원호의 길이와 중심각 사이에는 1대1 대응이 있고 비례관계(1차함수)가 된다는 사실을 가르쳐주면 매우 훌륭하게 준비가 된 것일 것입니다. (물론 이것은 외우거나 말로 가르쳐 주는 것이 아니고요, 많은 활동과 암시를 통해서 이루어져야 할 것입니다. 암시라 함은 물론 잘 이해하고 있는 선생님의 태도, 나아가서 많은 상황에서 생각이 나아가는 방향을 보여줌으로써 교육되는 그런 부분이 되어야 하겠지요.)

한편 라디안을 도입하는 데 원주의 길이는 그 한 가지 방법에 불과합니다. 실제로 삼각함수와 쌍곡함수의 이론을 보다 보면 각의 크기는 원호의 길이보다는 부채꼴의 넓이와 더 관계가 깊다고 생각이 듭니다. 반지름 1인 원의 원주의 길이는 2pi 이며 이 원의 넓이는 pi 입니다. 이 원의 어떤 부채꼴의 중심각이 theta 이면 이 부채꼴의 넓이는 theta/2 입니다. 따라서 중심각의 크기는 부채꼴의 호의 길이로 잡을 수도 있지만 부채꼴의 넓이의 두 배로 잡을 수도 있습니다. 그러나 우리에게는 더욱 자연스럽다고 생각되는, 넓이의 두 배라는 각의 개념은, 처음 공부하는 학생들에게는 더욱 부자연스러워 보이고 혼란스러울 것입니다. 이러한 모든 설명은 가르치시는 선생님이 알아서 직접 학생들에게 해 주시기를 바라는 것이며 교과서에는 표현되지 못하는 부분입니다. (현장에서 대부분의 선생님들이 진도와 시간, 다른 많은 일에 바빠서 제대로 설명해주지 못하시는 것은 감안하지 않은 이야기입니다만...) 이러한 부분을 제대로 설명하는 것은 아마도 우리나라에서는 교과서 보다는 다른 보충교재가 담당할 일이라고 생각됩니다. 그리고 이러한 보충교재의 내용은 수학을 정말로 잘 설명해야 하므로 교과서보다 훨씬 쓰기 어려운 책이 될 것입니다. 이러한 작업에 시간을 할애할 선생님이 계시다면 우리나라 수학교육이 매우 발전할 것이라고 생각됩니다.

이러한 부분에서 선생님께서 지적하신 오개념 부분이 잘 설명될 것이라고 생각됩니다. y = x + sin x 와 같은 것은 원칙적으로는 이미 라디안이란 개념을 떠난 추상적인 삼각함수에 대한 것이므로 논외입니다. (물론 더 어려운 해석학의 분야에 가서 다시 원으로 돌아와 후리에변환등을 하게 되면 또 다시 각과의 관계가 불거집니다만...)

마지막으로 선생님이 지적하신, 각을 측도(measure)로 보는 Moise 교수의 책과 같은 것은 수학을 엄밀하게 기술함으로써 개념의 혼돈을 막은 좋은 방법입니다. 그리고 이러한 관점은 이전의 SMSG 에서 가장 강조되었던 점입니다. 이것이 모든 선생님의 생각의 바탕에 있어야 하는 것임에는 다시 강조할 필요가 없을 것입니다만 이 내용을 학생들에게 직접 문자 그대로 전달하는 것은 혼란만을 더 할 것이며 교육의 목표를 왜곡시킬 소지가 큽니다. 우리가 원하는 것은 이러한 기본 개념을 학생들이 자연스럽게 받아들이고 스스로의 생각을 통해서 측도의 개념까지 도달하도록 유도하는 것이며(물론 당장 도달하지 못해도 아무 상관이 없습니다) 내용의 주입을 통해서 아직 받아들일 수 없는 상황에서 말로만 기억하게 하는 것이 아닙니다. 말로만 기억하는 것은 그 어떤 상황과 비교하여도 최악이라고 밖에는 말할 수가 없습니다.(모르는 것이 훨씬 낫습니다.)

(참고: 마지막 부분의 단위 문제는 역시 곱셈의 경우와 덧셈의 경우는 서로 다릅니다. 물리학이나 공학에서 잘 쓰는 차원의 문제(단위의 문제)는 그 자체로도 한 권의 책으로 쓰여질만큼 중요한 개념이며 그 중심개념만 뽑는다면 대수학의 텐서곱의 이론이 될 것입니다. 그러나 서로 다른 단위를 갖는 두 수의 합은 서로 다른 집합의 두 원소에 대한 연산으로서 잘 정의하기가 힘든 개념이 됩니다.)

블로그 이미지

그로몹

운영자의 개인적 생각을 모아 두는 곳입니다.

,